Atlantic areas of southern Europe have low water restrictions but are also characterized by acid soils with low intrinsic fertility, so the selection of clones that have adapted to these characteristics is essential. In this study, biomass yield data for eight poplar clones established in two trials were evaluated after the first rotation. Both sites were representative of acid soils that had previously been used for agriculture and had low levels of alkali and alkaline earth elements. The first trial was used to determine which clones performed the best in terms of biomass and stem size, testing two Populus × euramericana (Dode) Guinier (I-214 and AF2), two P. × interamericana Van Brokehuizen × P. nigra L. (Monviso, AF6), three P. × interamericana (Unal, Beaupre and Raspalje), and one P. trichocarpa Torr & A. Gray (Trichobel) clone. The second trial explored the possibility of simultaneously growing biomass and timber, specifically considering the Raspalje and Trichobel balsam poplar clones. To complete a previous study on energy properties, nine biomass samples were obtained from each of the eight clones to evaluate the composition and behavior of the ash generated during combustion, particularly the sintering risk. Several indices of sintering risk were explored and compared with the actual sintering using the BioSlag test. The results show large differences in biomass yield between clones, with the balsam poplar derived clones (both hybrid or pure Populus trichocarpa) performing the best. Growth results for stems planted for wood and the cuttings planted in between these stems show that a mixed biomass–timber arrangement provides good results, at least during the first rotation. The relative proportion of oxides in the poplar ash followed the order CaO > K2O > MgO >> P2O5 >> SiO2 > Al2O3 > Na2O > Fe2O5 >> TiO2. Significant differences between clones were found for K2O and MgO. Risk indices showed moderate levels of sintering derived from alkali elements, with significant differences between clones. The actual slagging and the hardness of the slag particles were very low thus, denoting good ash behavior during combustion, particularly for the clones selected for biomass yield. No significant covariate effect of basal diameter was found for any of the analyzed variables. We conclude that growing site-undemanding poplar clones in acid soils can yield both reasonable levels of biomass yield and good quality chips for combustion in domestic thermal systems.
The use of glued finger joint in green wood, directly from the sawing process, would open the possibility to obtain glued timber from small-sized wood, achieving an efficient use of the original raw material. The gluing of finger-jointed green wood, with moisture content above the fibre saturation point, may improve the efficiency and the manufacturing process of glulam or joinery. This may be especially beneficial for a hardwood such as Eucalyptus globulus L., which is a globally important forest resource, but is a challenging wood to dry. This article presents a study on the possibility to develop finger joints with wood in green state. To compare them, conventional finger joints on dry wood and solid boards without end joints were also manufactured. Cold-setting and fast-curing commercial one-component polyurethane adhesive systems were used. Finger-jointed samples were tested to determine mean and characteristic values (5th percentile) of density, bending strength and modulus of elasticity, and the results were analysed and discussed. Green-glued joints showed no statistically significant differences compared to the solid boards and improved strength properties with respect to dry-glued joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.