The aim of this study was to evaluate the effect of supplementation with Chlorella vulgaris and molasses application rates on water quality, zootechnical performance, proximate composition and health status of Nile tilapia (Oreochromis niloticus) fingerlings cultivated in low-salinity (10 g L-1) biofloc systems. Four treatments were tested in a factorial design (supplemented with microalgae and molasses application rates): BFT-C30 (Biofloc supplemented with C. vulgaris and molasses application rates of 30% of the total daily feed); BFT-30 (Biofloc with molasses application rates of 30% of the total daily feed); BFT-C50 (Biofloc supplemented with C. vulgaris and molasses application rates of 50% of the total daily feed) and BFT-50 (Biofloc with molasses application rates of 50% of the total daily feed), for 70 days. Fingerlings of O. niloticus (initial mean weight of 3.15 ± 0.5 g) were stocked at a density of 680 fish m-3 in experimental units (50L), where 50% of this volume was biofloc previously matured. Throughout the experiment, they were supplemented with C. vulgaris every five days at the concentration of 5x10 4 cells mL-1. A significant interaction between supplementation with C. vulgaris and molasses application rates for final weight and length, survival, feed conversion ratio, specific growth rate, water consumption, protein efficiency ratio, sedimentation time, planktonic community and hematological indices were observed. The results indicated that the high molasses application rates (50%) in the biofloc system affects the zootechnical performance, water consumption, sedimentation time and the hematological indices of the Nile Tilapia fingerlings, hampering their development. Therefore, molasses application rates of 30% of the total daily feed for the tilapia fingerlings culture in low-salinity biofloc system is recommended.
This study aimed to evaluate the growth of Arthrospira (Spirulina) platensis cultivated in Zarrouk culture medium and effluent from Nile tilapia (Oreochromis niloticus) reared in biofloc system. Four treatments were used: Control (100% Zarrouk), E50 (50% Zarrouk + 50% Tilapia effluent), E75 (25% Zarrouk + 75% Tilapia effluent), and E100 (100% Tilapia effluent), and the experiment lasted 10 days. Growth parameters such as maximum cell density (MCD), doubling time (DT), and growth rate (K) were daily evaluated, as well as pH and water temperature. In addition, the concentrations of total ammonia nitrogen (TAN), nitrite-N (NO2-N), and nitrate-N (NO3-N) were analyzed in order to compare nitrogen absorption. Among treatments, E50 and E75 obtained higher maximum cell densities and presented an exponential growth rate similar to the control treatment. Regarding the concentrations of nitrogen compounds, a significant reduction was observed in all treatments, with an NO3-N uptake of 99%, followed by 80% of TAN and 90% of NO2-N. Thus, giving the results obtained, besides being able to grow in wastewater, A. platensis can also be used in bioremediation processes, confirming the potential of this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.