Total and regional bone mineral content (BMC) as well as lean and fat mass were measured in nine male professional tennis players (TPs) and 17 nonactive subjects; dual-energy X-ray absorptiometry (DXA) was used for measuring. The mean (+/-SD) age, body mass, and height were 26 +/- 6 and 24 +/- 3 years, 77 +/- 10 and 74 +/- 9 kg, and 180 +/- 6 and 178 +/- 6 cm for the TP and the control group (CG), respectively. The whole body composition for BMC, lean mass, and fat of the TP was similar to that observed in the CG. The tissue composition of the arms and legs was determined from the regional analysis of the whole-body DXA scan. The arm region included the hand, forearm, and arm, and was separated from the trunk by an inclined line crossing the scapulo-humeral joint. In the TP, the arm tissue mass (BMC + fat + lean mass) was about 20% greater in the dominant compared with the contralateral arm because of a greater lean (3772 +/- 500 versus 3148 +/- 380 g, P < 0.001) and BMC (229.0 +/- 43.5 versus 188.2 +/- 31.9 g, P < 0.001). In contrast, no significant differences were observed either in BMC or BMD between arms in the CG. Total mass, lean mass, and BMC were greater in the dominant arm of the TP than in the CG (all P < 0.05). In the TP, BMD was similar in both legs whereas in the CG, BMD was greater in the right leg. Lumbar spine (L2-L4) BMD, adjusted for body mass and height, was 15% greater in the TP than in the CG (P < 0.05). Femoral neck BMDs (femoral neck, Ward's triangle, greater trochanter, and intertrochanteric regions) adjusted for body mass and height were 10-15% greater in the TP (all P < 0.05). Ward's triangle BMD was correlated with the maximal leg extension isometric strength (r = 0. 77, P < 0.05) even when adjusted for body mass (r = 0.76, P < 0.05) and height (r = 0.77, P < 0.05). In summary, the participation in tennis is associated with increased BMD in the lumbar spine and femoral neck. These results may have implications for devising exercise strategies in young and middle-aged persons to prevent involutional osteoporosis later in life.
Objective Genetic studies in the systemic sclerosis (SSc), an autoimmune disease that clinically manifests with dermal and internal organ fibrosis and small vessel vasculopathy, have identified multiple susceptibility genes including HLA-class II, PTPN22, IRF5, and STAT4 which have also been associated with other autoimmune diseases, such as systemic lupus erythematosus (SLE). These data suggest that there are common autoimmune disease susceptibility genes. The current report sought to determine if polymorphisms in the C8orf13-BLK region (chromosome 8p23.1-B lymphoid tyrosine kinase), which is associated with SLE, are associated also with SSc. Methods Two variants in the C8orf13-BLK region (rs13277113 & rs2736340) were tested for association with 1050 SSc cases and 694 controls of North Americans of European descent and replicated in a second series 589 SSc cases and 722 controls from Spain. Results The “T” allele at rs2736340 variant was associated with SSc in both the U.S. and Spanish case-control series (P=6.8×10−5, OR 1.27, 95%CI 1.1–1.4). The “A” allele at rs13277113 variant was associated with SSc in the U.S. series only (P=3.6×10−4, OR 1.32, 95%CI 1.1–1.6) and was significant in the combined analyses of the two series (P=2.0×10−3; OR 1.20, 95%CI 1.1–1.3). Both variants demonstrated an association with the anti-centromere antibody (P=2.2×10−6 and P=5.5×10−4, respectively) and limited SSc (P=3.3×10−5 and P=2.9×10−3, respectively) in the combined analysis. Peripheral blood gene expression profiles suggest that B-cell receptor and NFκB signaling are dysregulated based on the risk haplotype of these variants. Conclusion We identify and replicate the association of the C8orf13-BLK region as a novel susceptibility factor for SSc, placing it in the category of common autoimmune disease susceptibility genes.
The aim of this study was to assess bone mass in male elite athletes participating in an impact loading sport (volleyball) and, in particular, to determine whether the asymmetric nature of this sport leads to differences in the skeletal tissue composition of the limbs. Fifteen male volleyball players (VP) (26 +/- 4 years, 192 +/- 6 cm, 87 +/- 9 kg; mean +/- SD) and 15 non-active control subjects (25 +/- 2 years, 177 +/- 8 cm, 72 +/- 11 kg; mean +/- SD) were studied. VP training sessions (3-6 days/week) included a variety of jumping and weightlifting exercises. The VP were taller and heavier than the control subjects (p<0.001). Whole-body bone mineral content (BMC) and lean mass were higher in VP after adjustment for body mass and height (p<0.001). Axial skeleton and limb BMC and bone mineral density (BMD) were higher in VP than in control subjects (p<0.05). Adjusted lumbar spine (L2-4) BMD was 14% higher in VP than in control subjects (p<0.05). Similarly, a much greater adjusted BMD was observed in the femoral neck of VP (24%, 20%, 27% and 20% for the femoral neck, intertrochanteric, greater trochanter and Ward's triangle subregions respectively; p<0.05). The dominant arm was slightly heavier (approximately 3%) and had 4% more muscle mass than the contralateral arm in both the VP (p<0.05) and control subjects (p<0.05). Greater BMC values (9%), BMD (7%) values and the area occupied by osseous pixels (5%) were recorded in the dominant arm as compared with the nondominant arm in VP (p<0.05). No differences between arms were observed in control subjects. Right and left leg BMC and BMD values were similar in control subjects while 4% higher BMC values were recorded for the left leg in the VP group (p<0.05). A close relationship between left leg muscle mass and BMD was observed in the femoral neck subregions of all the subjects (r = 0.81, 0.81, 0.78 and 0.79 for the femoral neck, intertrochanteric, greater trochanter and Ward's triangle subregions respectively; p<0.001; n = 30). These findings clearly demonstrate a considerably high BMC and BMD in professional volleyball players which seems to be related to the loading type of exercise they perform.
IntroductionWe determined the contribution of the methylene tetrahydrofolate reductase (MTHFR) 677 C>T and 1298 A>C gene polymorphisms to the susceptibility to rheumatoid arthritis (RA). We also assessed whether these two MTHFR gene polymorphisms may be implicated in the development of cardiovascular (CV) events and subclinical atherosclerosis manifested by the presence of endothelial dysfunction, in a series of Spanish patients with RA.MethodsSix hundred and twelve patients fulfilling the 1987 American College of Rheumatology classification criteria for RA, seen at the rheumatology outpatient clinics of Hospital Xeral-Calde, Lugo and Hospital San Carlos, Madrid, were studied. Patients and controls (n = 865) were genotyped using predesigned TaqMan SNP genotyping assays.ResultsNo significant differences in allele or genotype frequencies for the MTHFR gene polymorphisms between RA patients and controls were found. Also, no association between the MTHFR 677 C>T polymorphism and CV events or endothelial dysfunction was observed. However, the MTHFR 1298 allele C frequency was increased in patients with CV events after 5 years (38.7% versus 30.3%; odds ratio = 1.45; 95% confidence interval = 1.00 to 2.10; P = 0.04) and 10 years (42.2% versus 31.0%; odds ratio = 1.62; 95% confidence interval = 1.08 to 2.43; P = 0.01) follow up. Moreover, patients carrying the MTHFR 1298 AC and CC genotypes had a significantly decreased flow-mediated endothelium-dependent vasodilatation (4.3 ± 3.9%) compared with those carrying the MTHFR 1298 AA genotype (6.5 ± 4.4%) (P = 0.005).ConclusionsOur results show that the MTHFR 1298 A>C gene polymorphism confers an increased risk for subclinical atherosclerosis and CV events in patients with RA.
The aim of this study was to determine the effects of long-term professional golf participation on whole-body and regional bone mass and density. Dual-energy X-ray absorptiometry was performed on 15 male professional golfers and 18 sedentary individuals, matched for sex, race, age (29+/-1 and 25+/-1 years, respectively), body mass (79+/-2 and 74+/-2 kg), height (1.78+/-0.01 and 1.77+/-0.02 m) and percent body fat (20+/-2 and 21+/-2%; mean +/- sx). We found that long-term professional golf participation is not associated with significant increments in regional or whole-body bone mass or density. Neither the lumbar spine nor the femoral neck showed any noticeable enhancement of bone mass in professional golfers compared with controls from the same population. The only effect of professional golf participation on regional body composition was a 9% increase in muscle mass in the dominant arm (P < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.