This study analyzes mobility patterns during the COVID-19 pandemic for eight large Latin American cities. Indicators of mobility by socioeconomic status (SES) are generated by combining georeferenced mobile phone information with granular census data. Before the pandemic, a strong positive association between SES and mobility is documented. With the arrival of the pandemic, in most cases, a negative association between mobility and SES emerges. This new pattern is explained by a notably stronger reduction in mobility by high-SES individuals. A comparison of mobility for SES decile 1 vs decile 10 shows that, on average, the reduction is 75% larger in the case of decile 10. According to estimated lasso models, an indicator of government restrictions provides a parsimonious description of these heterogeneous responses. These estimations point to noticeable similarities in the patterns observed across cities. We also explore how the median distance traveled changed for individuals that travel at least 1 km (the intensive margin). We find that the reduction in mobility in this indicator was larger for high-SES individuals compared to low-SES individuals in six out of eight cities analyzed. The evidence is consistent with asymmetries in the feasibility of working from home and in the ability to smooth consumption under temporary income shocks.
Esta investigación busca contribuir a la literatura sobre los determinantes de la evolución del número de casos y muertes por COVID-19 en el Perú; en específico, el rol de la movilidad de las personas –entendida como el desplazamiento–, la geografía y el desarrollo económico. Para ello, utilizamos regresiones de Poisson con efectos aleatorios y datos de cuatro grupos de variables a nivel de distritos: (1) COVID-19, (2) movilidad de las personas, (3) variables geográficas y (4) variables socioeconómicas. Los principales resultados indican que la movilidad de las personas tiene una relación negativa con la probabilidad de acumular casos y muertes de COVID-19 hasta la novena semana de pandemia, pero tiene una relación positiva a partir de la decimoprimera semana. También encontramos que las variables socioeconómicas como el PIB per cápita y la esperanza de vida tienen asociaciones positivas con la probabilidad de acumular casos y muertes de COVID-19; mientras que las variables geográficas, como la altura y la pendiente del territorio, tienen asociaciones negativas. Los resultados también indican que el rol de las variables geográficas y socioeconómicas depende de la inclusión de Lima en el análisis empírico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.