In neurons, it is well established that CREB contributes to learning and memory by orchestrating the translation of experience into the activity-dependent (i.e., driven by neurotransmitters) transcription of plasticity-related genes. The activity-dependent CREB-triggered transcription requires the concerted action of cyclic AMP/protein kinase A and Ca(2+) /calcineurin via the CREB-regulated transcription co-activator (CRTC). It is not known, however, whether a comparable molecular sequence occurs in astrocytes, despite the unquestionable contribution of these cells to brain plasticity. Here we sought to determine whether and how ATP and noradrenaline cause CREB-dependent transcription in rat cortical astrocyte cultures. Both transmitters induced CREB phosphorylation (Western Blots), CREB-dependent transcription (CRE-luciferase reporter assays), and the transcription of Bdnf, a canonical regulator of synaptic plasticity (quantitative RT-PCR). We indentified a Ca(2+) and diacylglycerol-independent protein kinase C at the uppermost position of the cascade leading to CREB-dependent transcription. Notably, CREB-dependent transcription was partially dependent on ERK1/2 and CRTC, but independent of cyclic AMP/protein kinase A or Ca(2+) /calcineurin. We conclude that ATP and noradrenaline activate CREB-dependent transcription in cortical astrocytes via an atypical protein kinase C. It is of relevance that the signaling involved be starkly different to the one described in neurons since there is no convergence of Ca(2+) and cyclic AMP-dependent pathways on CRTC, which, moreover, exerts a modulatory rather than a central role. Our data thus point to the existence of an alternative, non-neuronal, glia-based role of CREB in plasticity.
The cyclic AMP response element binding protein (CREB) is a primary hub of activity-driven genetic programs in neurons controlling plasticity, neurogenesis and survival. By contrast, the gene networks coordinated by CREB in astrocytes are unknown despite the fact that the astrocytic CREB is also activity-driven and neuroprotective. Herein we identified the transcriptional programs regulated by CREB in astrocytes as compared to neurons using, as study materials, transcriptome databases of astrocyte exposed to well-known activators of CREB-dependent transcription as well as publicly available transcriptomes of neuronal cultures. Functional CREB signatures were extracted from the transcriptomes using Gene Ontology, adult-brain gene lists generated by Translating Ribosome Affinity Purification (TRAP) and CREB-target gene repositories. We found minimal overlap between CREB signatures in astrocytes and neurons. In astrocytes, the top triad of functions regulated by CREB consists of ‘Gene expression’, ‘Mitochondria’, and ‘Signalling’, while in neurons it is ‘Neurotransmission’, ‘Signalling’ and ‘Gene expression’, the latter two being represented by different genes from those in astrocytes. The newly generated databases will provide a tool to explore novel means whereby CREB impinges on brain functions requiring adaptive, long-lasting changes by coordinating transcriptional cascades in astrocytes.
The clinical challenge in acute injury as in traumatic brain injury (TBI) is to halt the delayed neuronal loss that occurs hours and days after the insult. Here we report that the activation of CREB-dependent transcription in reactive astrocytes prevents secondary injury in cerebral cortex after experimental TBI. The study was performed in a novel bitransgenic mouse in which a constitutively active CREB, VP16-CREB, was targeted to astrocytes with the Tet-Off system. Using histochemistry, qPCR, and gene profiling we found less neuronal death and damage, reduced macrophage infiltration, preserved mitochondria, and rescued expression of genes related to mitochondrial metabolism in bitransgenic mice as compared to wild type littermates. Finally, with meta-analyses using publicly available databases we identified a core set of VP16-CREB candidate target genes that may account for the neuroprotective effect. Enhancing CREB activity in astrocytes thus emerges as a novel avenue in acute brain post-injury therapeutics.
Hemostasis is a major concern during the perioperative period. Changes in platelet aggregation and coagulation factors may contribute to the delicate balance between thrombosis and bleeding. We sought to better understand perioperative hemostasis by investigating the changes in platelet aggregation and coagulation factors during the perioperative period. We performed a prospective cohort analysis of 70 subjects undergoing non-emergent orthopedic surgery of the knee (n = 28), hip (n = 35), or spine (n = 7) between August 2011 and November 2011. Plasma was collected preoperatively (T1), 1-h intraoperatively (T2), 1-h (T3), 24-h (T4) and 48-h (T5) postoperatively. Platelet function testing was performed using whole blood impedance aggregometry. Coagulation assays were performed for factor VII, factor VIII, von Willebrand Factor (vWF), and fibrinogen. Of the 70 patients, mean age was 64.1 ± 9.8 years, 61% were female, and 74% were Caucasian. Platelet activity decreased until 1 h postoperatively and then significantly increased above baseline at 24- and 48-h postoperatively. Compared to baseline, coagulation factors decreased intraoperatively. Factor VII activity continued to decrease, while FVIII, vWF, and fibrinogen all increased above baseline postoperatively. The results of our study indicate significant changes in platelet activity and coagulation factors during the perioperative period. Both platelet activity and markers of coagulation decrease during the intraoperative period and then some increase postoperatively. These changes may contribute to the hypercoagulabity and/or bleeding risk that occurs in the perioperative period. Future prospective studies aimed at correlating hemostatic changes with perioperative outcomes are warranted.
Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum-mitochondria interface, which might be an astrocyte-based form of long-term depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.