Induced pluripotent stem cells (iPSCs) provide a unique opportunity for generation of patient-specific cells for use in translational purposes. We aimed to compare iPSCs generated by different reprogramming methods regarding their reprogramming efficiency, pluripotency capacity, and the possibility to use high-throughput PCR-based methods for detection of human pathogenic viruses. iPSCs from skin fibroblasts (FB), peripheral blood mononuclear cells (PBMCs), or mesenchymal stem cells (MSCs) were generated by using three different reprogramming systems including chromosomal integrating and nonintegrating methods. Reprogramming efficiencies were in accordance with the literature, indicating that the parental cell type and the reprogramming method play a major role for the reprogramming efficiencies (FB: STEMCCA: 1.30±0.18, Sendai virus: 1.37±0.01, and episomal plasmids: 0.04±0.02; PBMCs: Sendai virus: 0.002±0.001, episomal plasmids: 0) but result in the same characteristics of pluripotency. We found the highest reprogramming efficiencies for MSC with 3.32±1.2 by using episomal plasmids. Since GMP standard working procedures and screening units need virus contamination-free cell lines, we studied HIV-1 contamination in the generated iPSCs. We used the high-throughput cobas® 6800/8800 system, which is normally used for detection of HIV-1 in plasma of patients, and found that footprint-free reprogramming methods as episomal plasmids and Sendai virus are useful for the described virus detection method. This fast, cost-effective, robust, and reliable assay demonstrates the feasibility to use high-throughput PCR-based methods for detection of human pathogenic viruses in ps-iPSC lines that were generated with nongenome integrating reprogramming methods.
Cancer therapies with anthracyclines have been shown to induce cardiovascular complications. The aims of this study were to establish an in vitro induced pluripotent stem cell model (iPSC) of anthracycline-induced cardiotoxicity (ACT) from patients with an aggressive form of B-cell lymphoma and to examine whether doxorubicin (DOX)-treated ACT-iPSC cardiomyocytes (CM) can recapitulate the clinical features exhibited by patients, and thus help uncover a DOX-dependent pathomechanism. ACT-iPSC CM generated from individuals with CD20+ B-cell lymphoma who had received high doses of DOX and suffered cardiac dysfunction were studied and compared to control-iPSC CM from cancer survivors without cardiac symptoms. In cellular studies, ACT-iPSC CM were persistently more susceptible to DOX toxicity including augmented disorganized myofilament structure, changed mitochondrial shape, and increased apoptotic events. Consistently, ACT-iPSC CM and cardiac fibroblasts isolated from fibrotic human ACT myocardium exhibited higher DOX-dependent reactive oxygen species. In functional studies, Ca2+ transient amplitude of ACT-iPSC CM was reduced compared to control cells, and diastolic sarcoplasmic reticulum Ca2+ leak was DOX-dependently increased. This could be explained by overactive CaMKIIδ in ACT CM. Together with DOX-dependent augmented proarrhythmic cellular triggers and prolonged action potentials in ACT CM, this suggests a cellular link to arrhythmogenic events and contractile dysfunction especially found in ACT engineered human myocardium. CamKIIδ inhibition prevented proarrhythmic triggers in ACT. In contrast, control CM upregulated SERCA2a expression in a DOX-dependent manner, possibly to avoid heart failure conditions. In conclusion, we developed the first human patient-specific stem cell model of DOX-induced cardiac dysfunction from patients with B-cell lymphoma. Our results suggest that DOX-induced stress resulted in arrhythmogenic events associated with contractile dysfunction and finally in heart failure after persistent stress activation in ACT patients.
1 Cancer therapies have been shown to induce cardiovascular complications. The aims of this study 2 were to establish an in vitro induced pluripotent stem cell model (iPSC) of anthracycline-induced 3 cardiotoxicity (ACT) from patients with an aggressive form of cancer. 4 ACT-iPSC-CM generated from individuals with CD20 + B-cell lymphoma cancer who had received 5 high doses of DOX and suffered cardiac dysfunction were observed to be persistently more 6 susceptible to DOX toxicity compared to control-iPSC-CM. ACT-iPSC-CM exhibited increased DOX-7 dependent disorganized myofilament structure and cell death, as well as higher reactive oxygen 8 species (ROS) compared to controls. Importantly, analysis of engineered heart muscle (EHM) from 9 ACT-iPSC-CM showed an impaired DOX-dependent mechanical functionality. Transcriptome 10 profiles of EHM are in line with a disturbed adjustment to DOX-dependent alteration of Ca 2+ 11 homeostasis in ACT-iPSC-CM. Furthermore, genetic variants in different cardiac key regulators 12 were uncovered. 13 In conclusion, we developed the first human iPSC-CM and EHM model of DOX-induced cardiac 14 dysfunction in patients with B-cell lymphoma. Our results suggest that DOX-related stress 15 resulted in decreased contractile activity and finally in heart failure in ACT patients. 16 17 Brief summary: Development of the first human iPSC-CM model of DOX-induced cardiac 18 dysfunction in patients with aggressive B cell lymphoma and high-dose DOX treatment.19 20
Krueppel-like factor 15 (KLF15) is abundantly expressed in liver, kidney, and muscle, including myocardium. In the adult heart KLF15 is important to maintain homeostasis and to repress hypertrophic remodeling. We generated a homozygous hESC KLF15 knockout (KO) line using paired CRISPR/Cas9n. KLF15-KO cells maintained full pluripotency and differentiation potential as well as genomic integrity. We demonstrated that KLF15-KO cells can be differentiated into morphologically normal cardiomyocytes turning them into a valuable tool for studying human KLF15-mediated mechanisms resulting in human cardiac dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.