The current industrial scenario demands advances that depend on expensive and sophisticated solutions. Augmented Reality (AR) can complement, with virtual elements, the real world. Faced with this features, an AR experience can meet the demand for prototype testing and new solutions, predicting problems and failures that may only exist in real situations. This work presents an environment for experimentation of advanced behaviors in smart factories, allowing experimentation with multi-robot systems (MRS), interconnected, cooperative, and interacting with virtual elements. The concept of ARENA introduces a novel approach to realistic and immersive experimentation in industrial environments, aiming to evaluate new technologies aligned with the Industry 4.0. The proposed method consists of a small-scale warehouse, inspired in a real scenario characterized in this paper, managing by a group of autonomous forklifts, fully interconnected, which are embodied by a swarm of tiny robots developed and prepared to operate in the small scale scenario. The AR is employed to enhance the capabilities of swarm robots, allowing box handling and virtual forklifts. Virtual laser range finders (LRF) are specially designed as segmentation of a global RGB-D camera, to improve robot perception, allowing obstacle avoidance and environment mapping. This infrastructure enables the evaluation of new strategies to improve manufacturing productivity, without compromising the production by automation faults.
Mobile robotic applications are increasing in several areas not only in industries but also service robots. The Industry 4.0 promoted even more the digitalization of factories that opened space for smart-factories implementation. Robotic competitions are a key to improve research and to motivate learning. This paper addresses a new competition proposal, the Robot@Factory Lite, in the scope of the Portuguese Robotics Open. Beyond the competition, a reference robot with all its components is proposed and a simulation environment is also provided. To minimize the gap between the simulation and the real implementation, an Hardware-in-the-loop technique is proposed that allows to control the simulation with a real Arduino board. Results show the same code, and hardware, can control both simulation model and real robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.