The W-Sn Regoufe mine, closed since the 1970s, was once intensively exploited for tungsten concentrates. Throughout its activity, considerable amounts of arsenopyrite-rich mine wastes were produced and, to this day, are still exposed to weathering conditions. Thus, this work aims at assessing soil contamination, using a combination of chemical, physicochemical and mineralogical analyses and sequential selective chemical extraction of the main potentially toxic elements (PTEs) in topsoils. Results show that Regoufe soils are enriched in most of the PTEs associated with the ore assemblage, but As and Cd contents far outstrip both international and national guidelines. The estimated contamination factor reveals that 67% of soil samples are classified as highly to ultra-highly contaminated. Similar distribution patterns, with the main focus around the unsealed mine adits, are observed when spatially projecting the modified degree of contamination (mCd) and arsenic contents. Fe-oxyhydroxides and organic matter demonstrate to have a preponderant role in the retention of Cd and As. In fact, despite the high PTE contents in soils, local surface waters are characterised by low metal(loid) contents and nearly neutral pH, with PTE concentrations below national thresholds for irrigation waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.