In Mexico, due to the high rates of diabetes, overweight, and obesity, there has also been noted an increased newborn weight, which may be contributing to the elevated incidence rate of childhood acute leukemia (AL). We conducted a case–control study in public hospitals of Mexico City aimed to know whether a greater weight at birth is associated with a higher risk of developing leukemia. We included incident cases with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) diagnosed between 2010 and 2015. Controls were frequency‐matched to the cases by age, sex, and health institution. Logistic regression analysis was performed adjusting risks by child's sex, overcrowding index, birth order, and mother's age at the time of pregnancy. Adjusted odds ratios (aORs) and 95% confidence intervals were calculated. A total of 1455 cases and 1455 controls were included. An evident association between ALL and child's birthweight ≥2500 g was found (aOR 2.06; 95% CI: 1.59, 2.66) and also, in those with birthweight ≥3500 g (aOR 1.19; 95% CI: 1.00, 1.41). In AML patients with birthweight ≥2500 g and ≥3500 g, an aOR of 1.77 (95% CI: 1.07, 2.94) and 1.42 (95% CI: 1.03–1.95) was observed, respectively. No association was noticed with either type of AL and a birthweight ≥4000 g. To sum up, we found a moderate association between not having a low birthweight and an increased risk of acute leukemias. Birthweight ≥3500 g was also a risk factor for both types of leukemia. This suggests that a greater birthweight may increase the risk of acute leukemias in Mexican children.
It is important to study the relationship between extremely low-frequency magnetic fields (ELF-MFs) and childhood leukemia, particularly in locations with a high incidence of this neoplasm in children and an elevated exposure to ELF-MF, such as Mexico City. The aim was to investigate the association between ELF-MF exposure and the risk of B-lineage acute lymphoblastic leukemia (B-ALL). A case-control study was conducted in Mexico City during the period from 2010 to 2011. Residential 24-h ELF-MF measurements were obtained for 290 incident BALL patients and 407 controls, aged less than 16 years. Controls were frequency-matched by sex, age (±18 months), and health institution. The adjusted odds ratios (aOR) and 95% confidence intervals (CIs) were calculated. ELF-MF exposure at <0.2 μT was used to define the reference group. ELF-MF exposure at ≥0.3 μT was observed in 11.3% of the controls. Different ELF-MF intensity cutoff values were used to define the highest exposure category; the highest exposure category for each cutoff value was associated with an increased risk of BALL compared with the corresponding lower exposure categories. The aORs were as follows: ≥0.2 μT = 1.26 (95% CI: 0.84-1.89); ≥0.3 μT = 1.53 (95% CI: 0.95-2.48); ≥0.4 μT = 1.87 (95% CI: 1.04-3.35); ≥0.5 μT = 1.80 (95% CI 0.95-3.44); ≥0.6 μT = 2.32 (95% CI: 1.10-4.93). ELF-MF exposure as a continuous variable (per 0.2 μT intervals) was associated with BALL risk (aOR = 1.06; 95% CI: 1.01-1.12). In the present study, the proportion of children exposed to ≥0.3 μT is among the highest reported worldwide. Additionally, an ELF-MF exposure ≥0.4 μT may be associated with the risk of BALL .
ImportancePlatelet activation is a potential therapeutic target in patients with COVID-19.ObjectiveTo evaluate the effect of P2Y12 inhibition among critically ill patients hospitalized for COVID-19.Design, Setting, and ParticipantsThis international, open-label, adaptive platform, 1:1 randomized clinical trial included critically ill (requiring intensive care–level support) patients hospitalized with COVID-19. Patients were enrolled between February 26, 2021, through June 22, 2022. Enrollment was discontinued on June 22, 2022, by the trial leadership in coordination with the study sponsor given a marked slowing of the enrollment rate of critically ill patients.InterventionParticipants were randomly assigned to receive a P2Y12 inhibitor or no P2Y12 inhibitor (usual care) for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor.Main Outcomes and MeasuresThe primary outcome was organ support–free days, evaluated on an ordinal scale that combined in-hospital death and, for participants who survived to hospital discharge, the number of days free of cardiovascular or respiratory organ support up to day 21 of the index hospitalization. The primary safety outcome was major bleeding, as defined by the International Society on Thrombosis and Hemostasis.ResultsAt the time of trial termination, 949 participants (median [IQR] age, 56 [46-65] years; 603 male [63.5%]) had been randomly assigned, 479 to the P2Y12 inhibitor group and 470 to usual care. In the P2Y12 inhibitor group, ticagrelor was used in 372 participants (78.8%) and clopidogrel in 100 participants (21.2%). The estimated adjusted odds ratio (AOR) for the effect of P2Y12 inhibitor on organ support–free days was 1.07 (95% credible interval, 0.85-1.33). The posterior probability of superiority (defined as an OR &gt; 1.0) was 72.9%. Overall, 354 participants (74.5%) in the P2Y12 inhibitor group and 339 participants (72.4%) in the usual care group survived to hospital discharge (median AOR, 1.15; 95% credible interval, 0.84-1.55; posterior probability of superiority, 80.8%). Major bleeding occurred in 13 participants (2.7%) in the P2Y12 inhibitor group and 13 (2.8%) in the usual care group. The estimated mortality rate at 90 days for the P2Y12 inhibitor group was 25.5% and for the usual care group was 27.0% (adjusted hazard ratio, 0.96; 95% CI, 0.76-1.23; P = .77).Conclusions and RelevanceIn this randomized clinical trial of critically ill participants hospitalized for COVID-19, treatment with a P2Y12 inhibitor did not improve the number of days alive and free of cardiovascular or respiratory organ support. The use of the P2Y12 inhibitor did not increase major bleeding compared with usual care. These data do not support routine use of a P2Y12 inhibitor in critically ill patients hospitalized for COVID-19.Trial RegistrationClinicalTrials.gov Identifier: NCT04505774
Klebsiella pneumoniae is a pathogenic bacterium associated with different infectious diseases. This study aimed to establish the different association profiles of virulence genes related to the hypermucoviscous phenotype (HM), capsular serotypes, biofilm formation, and multidrug resistance in K. pneumoniae strains from patients with hospital- and community-acquired infections. K. pneumoniae virulence genes and capsular serotypes were identified by PCR, antibiotic susceptibility by the Kirby–Bauer method, HM by the string test, and biofilm formation by measurement in polystyrene microtiter plates. Of a total of 150 strains from patients with hospital- (n = 25) and community-acquired infections (n = 125), 53.3% (80/150) were HM-positive and 46.7% (70/150) were HM-negative. HM-positive (68/80) and HM-negative (67/70) strains were biofilm-forming. Moreover, 58.7% (47/80) HM-positive and 57.1% (40/70) HM-negative strains were multidrug-resistant. Among HM-positive, HM-negative, and serotypes K1 (25/150), K2 (48/150), and non-K1/K2 strains, (77/150) the frequently detected adhesion genes were fimH, mrkD, ycfM, and kpn; entB, irp2, irp1, and ybtS, for iron acquisition; and rmpA for protectins. The gene association pattern fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/fyuA (18/150) was frequent among the strains. K. pneumoniae strains from patients with hospital- and community-acquired infections demonstrated a wide diversity of virulence gene profiles related to phenotype (hypermucoviscosity, multidrug resistance, and biofilm formation) and serotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.