Industry 4.0 is leading the Fourth Industrial Revolution transforming traditional factories into smart factories governed by the Internet of Things (IoT). In order to assist smart factory employees, this paper introduces OperaBLE, a Bluetooth Low Energy (BLE) wearable proposal which is aimed at enhancing working conditions and efficiency in Industry 4.0 scenarios. We have developed two innovative algorithms for OperaBLE focused on power awareness as the key-enabling attribute towards success: Low-Frequency Movement Characterisation Algorithm (LoMoCA) and Adaptive Heart Rate Algorithm (AHRA). Novel experiments have been carried out using OperaBLE to determine its operability, reliability, and lifespan. Results obtained during experimentation demonstrate how OperaBLE empowers human-machine collaboration embedding workers in closed-loop performance and ensuring nonharmful working conditions by means of power-aware algorithms. OperaBLE is due to bring digitalisation into smart factories, playing an essential role in the emerging wearable revolution to arise in the following years towards smart production systems.
In the context of fast-growing digitization of industrial environments, Industry 4.0 aims to improve key elements to achieve more efficient processes, flexibility in customizing products and reduction in energy consumption, among other objectives. This paper presents a system that exploits the Internet of Things (IoT), massive data computation, and human-robot collaboration to reach these goals. The described system combines technological and human-centered aspects to enhance human-robot interaction. In fact, the human factor cannot be left aside when technological advances affecting society are foreseen. The proposal has been tested on a gesture control system that enables a natural interaction with a robotic arm through the use of IoT-oriented inertial measurement unit devices. These devices capture the movements of both human’s arms. Experiments of a technical nature have been run to measure accuracy and latency. In addition, human-centered tests have been conducted with real users to determine the level of intuitiveness and acceptance of the proposed gesture control. The results obtained demonstrate that the proposal meets the demands in terms of real-time, success rate, flexibility and scalability, which are fundamental requirements in Industry 4.0. The usability results have enabled drawing useful conclusions on the use of such human-robot interaction systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.