We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site-leucinerich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.de novo genome sequence | phylome M elon (Cucumis melo L.) is a eudicot diploid plant species (2n = 2x = 24) of interest for its specific biological properties and for its economic importance. It belongs to the Cucurbitaceae family, which also includes cucumber (Cucumis sativus L.), watermelon [Citrullus lanatus (Thunb.) Matsum.
BackgroundThe melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits.ResultsThe nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively.ConclusionsWhereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non-conserved structure both in gene number and organisation, as well as in the features of the noncoding DNA. The transfer of nuclear DNA to the melon mitochondrial genome and the high proportion of repetitive DNA appear to explain the size of the largest mitochondrial genome reported so far.
Summary Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient‐depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin‐triggered immune responses during symbiosis.In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM.RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin‐oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin‐triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host‐induced gene silencing of RiSLM greatly reduces fungal colonization levels.Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin‐triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.
This study assessed the use of in vitro olive plants to evaluate the virulence of Pseudomonas savastanoi pv. savastanoi strains isolated from olive and P. savastanoi pv. nerii strains isolated from oleander knots. First, different olive isolates were inoculated into stem wounds and differences in knot formation and weight of overgrowths were observed for the selected strains. Tissue proliferation was clearly visible in all inoculated plants 30 days after inoculation. Virulence of P. savastanoi pv. nerii mutants with defects in regard to biosynthesis of indole-3-acetic acid and/or cytokinins was tested using this system. In agreement with data previously reported, all mutant strains multiplied in olive but induced attenuated symptoms. To analyze the virulence of P. savastanoi pv. savastanoi affected in their ability to grow in olive tissue, a trpE tryptophan auxotroph mutant was generated using a collection of signature tagged mutagenesis transposons. Virulence of this mutant was clearly reduced as evidenced by swelling of the olive tissue that evolved into attenuated knots. Furthermore, mixed infections with its parental strain revealed that the wild-type strain completely out-competed the trpE mutant. Results shown here demonstrate the usefulness of in vitro olive plants for the analysis of P. savastanoi pvs. savastanoi and nerii virulence. In addition, this system offers the possibility of quantifying virulence differences as weight of overgrowths. Moreover, we established the basis for the use of mixed infections in combination with signature tagged mutagenesis for high-throughput functional genomic analysis of this bacterial pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.