ICD-9 410 code has high PPV for AMI cases, likewise 411 for UA cases. Case validation remains important in epidemiological studies with administrative health databases. Given the pathophysiology of ACS, both AMI and UA might be used as study end points. In addition to code 410, we recommend the use of 411 plus validation.
Despite the potential given by the combination of multitenancy and virtualization, resource utilization in today's data centers is still low. We identify three key characteristics of cloud services and infrastructure as-a-service management practices: burstiness in service workloads, fluctuations in virtual machine resource usage over time, and virtual machines being limited to pre-defined sizes only. Based on these characteristics, we propose scheduling and admission control algorithms that incorporate resource overbooking to improve utilization. A combination of modeling, monitoring, and prediction techniques is used to avoid overpassing the total infrastructure capacity. A performance evaluation using a mixture of workload traces demonstrates the potential for significant improvements in resource utilization while still avoiding overpassing the total capacity.
Abstract-Elasticity is a key characteristic of cloud computing that increases the flexibility for cloud consumers, allowing them to adapt the amount of physical resources associated to their services over time in an on-demand basis. However, elasticity creates problems for cloud providers as it may lead to poor resource utilization, specially in combination with other factors, such as user overestimations and pre-defined VM sizes. Admission control mechanisms are thus needed to increase the number of services accepted, raising the utilization without affecting services performance. This work focuses on implementing an autonomic risk-aware overbooking architecture capable of increasing the resource utilization of cloud data centers by accepting more virtual machines than physical available resources. Fuzzy logic functions are used to estimate the associated risk to each overbooking decision. By using a distributed PID controller approach, the system is capable of self-adapting over time -changing the acceptable level of risk -depending on the current status of the cloud data center. The suggested approach is extensively evaluated using a combination of simulations and experiments executing real cloud applications with real-life available workloads. Our results show a 50% increment at both resource utilization and capacity allocated with acceptable performance degradation and more stable resource utilization over time.
Abstract-Resource overbooking is an admission control technique to increase utilization in cloud environments. However, due to uncertainty about future application workloads, overbooking may result in overload situations and deteriorated performance. We mitigate this using brownout, a feedback approach to application performance steering, that ensures graceful degradation during load spikes and thus avoids overload. Additionally, brownout management information is included into the overbooking system, enabling the development of improved reactive methods to overload situations. Our combined brownout-overbooking approach is evaluated based on real-life interactive workloads and noninteractive batch applications. The results show that our approach achieves an improvement of resource utilization of 11 to 37 percentage points, while keeping response times lower than the set target of 1 second, with negligible application degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.