IntroductionContinuous EEG (cEEG) is increasingly used to monitor brain function in neuro-ICU patients. However, its value in patients with coma after cardiac arrest (CA), particularly in the setting of therapeutic hypothermia (TH), is only beginning to be elucidated. The aim of this study was to examine whether cEEG performed during TH may predict outcome.MethodsFrom April 2009 to April 2010, we prospectively studied 34 consecutive comatose patients treated with TH after CA who were monitored with cEEG, initiated during hypothermia and maintained after rewarming. EEG background reactivity to painful stimulation was tested. We analyzed the association between cEEG findings and neurologic outcome, assessed at 2 months with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC).ResultsContinuous EEG recording was started 12 ± 6 hours after CA and lasted 30 ± 11 hours. Nonreactive cEEG background (12 of 15 (75%) among nonsurvivors versus none of 19 (0) survivors; P < 0.001) and prolonged discontinuous "burst-suppression" activity (11 of 15 (73%) versus none of 19; P < 0.001) were significantly associated with mortality. EEG seizures with absent background reactivity also differed significantly (seven of 15 (47%) versus none of 12 (0); P = 0.001). In patients with nonreactive background or seizures/epileptiform discharges on cEEG, no improvement was seen after TH. Nonreactive cEEG background during TH had a positive predictive value of 100% (95% confidence interval (CI), 74 to 100%) and a false-positive rate of 0 (95% CI, 0 to 18%) for mortality. All survivors had cEEG background reactivity, and the majority of them (14 (74%) of 19) had a favorable outcome (CPC 1 or 2).ConclusionsContinuous EEG monitoring showing a nonreactive or discontinuous background during TH is strongly associated with unfavorable outcome in patients with coma after CA. These data warrant larger studies to confirm the value of continuous EEG monitoring in predicting prognosis after CA and TH.
Experimental evidence demonstrates that therapeutic temperature modulation with the use of mild induced hypothermia (MIH, defined as the maintenance of body temperature at 32-35 °C) exerts significant neuroprotection and attenuates secondary cerebral insults after traumatic brain injury (TBI). In adult TBI patients, MIH has been used during the acute "early" phase as prophylactic neuroprotectant and in the sub-acute "late" phase to control brain edema. When used to control brain edema, MIH is effective in reducing elevated intracranial pressure (ICP), and is a valid therapy of refractory intracranial hypertension in TBI patients. Based on the available evidence, we recommend: applying standardized algorithms for the management of induced cooling; paying attention to limit potential side effects (shivering, infections, electrolyte disorders, arrhythmias, reduced cardiac output); and using controlled, slow (0.1-0.2 °C/h) rewarming, to avoid rebound ICP. The optimal temperature target should be titrated to maintain ICP <20 mmHg and to avoid temperatures <35 °C. The duration of cooling should be individualized until the resolution of brain edema, and may be longer than 48 h. Patients with refractory elevated ICP following focal TBI (e.g. hemorrhagic contusions) may respond better to MIH than those with diffuse injury. Randomized controlled trials are underway to evaluate the impact of MIH on neurological outcome in adult TBI patients with elevated ICP. The use of MIH as prophylactic neuroprotectant in the early phase of adult TBI is not supported by clinical evidence and is not recommended.
Background and Purpose-A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). Methods-We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H 2 O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. Results-Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; PϽ0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (PϽ0.001) and in V10-40 than in V10-20 (PϽ0.01). ABG was not sensitive enough to detect a shunt in 31 patients. Conclusions-The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO. Key Words: foramen ovale, patent Ⅲ oxygen Ⅲ ultrasonography, Doppler, transcranial Ⅲ Valsalva maneuver T he patent foramen ovale (PFO) with or without coexistent atrial septal aneurysm is generally considered to be associated with brain disorders, including first-ever ischemic stroke in young patients, 1,2 cryptogenic stroke, 3,4 migraine, 4 -6 and cerebral decompression sickness in scuba divers. 7,8 Some authors do not confirm the association between isolated PFO and increased risk of ischemic stroke 9 or recurrent stroke. 4,10 The size of PFO and the degree of right-to-left cardiac shunt (RLS) in these disorders are debated. 4,10 The presence of large PFO and high-degree RLS was demonstrated to increase the risk of cryptogenic stroke, 10 -13 recurrent stroke, 14 -16 the number of silent ischemic brain lesions in divers, 16 migraine with aura, 5,6,18 and cerebral decompression sickness. 19 Other studies show that either percutaneous or surgical closure of PFO decreases the number of recurrent ischemic strokes, 20,21 improves migraine symptoms, 22 and decreases the number of decompression cerebral ischemic events 23 and support the positive relation between highdegree RLS and the aforementioned pathologies.Contrast transcranial Doppler ultrasonography (c-TCD) is a complementary method to contrast-enhanced transesophageal echocardiography (c-T...
Cerebral aneurysms and arteriovenous malformations (AVMs) are well-known sources of intracranial hemorrhage, but can also manifest as other clinical symptoms or remain clinically asymptomatic. The aim was to document and analyze cases of aneurysm or AVM with brain infarction. Survey on 4804 stroke patients treated at the Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland between 1978 and 2000 using the Lausanne Stroke Registry. Twenty patients presented with cerebral aneurysm and 21 with cerebral AVM. Hemorrhage was present in 100% of the AVM and in 75% of the aneurysm patients; in one (5%) of the remaining aneurysm patients, aneurysm and infarction were located in different territories. Infarction associated with Sylvian artery aneurysm was found in three (15%), vertebrobasilar ischemia because of fusiform left vertebral artery aneurysm in one (5%), and dural fistula draining to the distal transversal and left sigmoid sinus associated with a stroke in the territory of the left anterior inferior cerebellar artery in one patient. Ischemic stroke is infrequent, but important, complication in unruptured intracranial aneurysms and AVMs. The early recognition and therapy of these vascular malformations in selected patients can avoid a major neurological deficit or death caused by their rupture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.