Upon a serious emergency situation such as a natural disaster, people quickly try to call their friends and family with the software they use every day. On the other hand, people also tend to participate as a volunteer for rescue purposes. It is unlikely and impractical for these people to download and learn to use an application specially designed for aid processes. In this work, we investigate the feasibility of including bots, which provide a mechanism to get inside the software that people use daily, to develop emergency software applications designed to be used by victims and volunteers during stressful situations. In such situations, it is necessary to achieve efficiency, scalability, fault tolerance, elasticity, and mobility between data centers. We evaluate three bot-based applications. The first one, named Jayma, sends information about affected people during the natural disaster to a network of contacts. The second bot-based application, Ayni, manages and assigns tasks to volunteers. The third bot-based application named Rimay registers volunteers and manages campaigns and emergency tasks. The applications are built using common practice for distributed software architecture design. Most of the components forming the architecture are from existing public domain software, and some components are even consumed as an external service as in the case of Telegram. Moreover, the applications are executed on commodity hardware usually available from universities. We evaluate the applications to detect critical tasks, bottlenecks, and the most critical resource. Results show that Ayni and Rimay tend to saturate the CPU faster than other resources. Meanwhile, the RAM memory tends to reach the highest utilization level in the Jayma application.
Computational simulation is a powerful tool for performance evaluation of computational systems. It is useful to make capacity planning of data center clusters, to obtain profiling reports of software applications and to detect bottlenecks. It has been used in different research areas like large scale Web search engines, natural disaster evacuations, computational biology, human behavior and tendency, among many others. However, properly tuning the parameters of the simulators, defining the scenarios to be simulated and collecting the data traces is not an easy task. It is an incremental process which requires constantly comparing the estimated metrics and the flow of simulated actions against real data. In this work, we present an experimental framework designed for the development of large scale simulations of two applications used upon the occurrence of a natural disaster strikes. The first one is a social application aimed to register volunteers and manage emergency campaigns and tasks. The second one is a benchmark application a data repository named MongoDB. The applications are deployed in a distributed platform which combines different technologies like a Proxy, a Containers Orchestrator, Containers and a NoSQL Database. We simulate both applications and the architecture platform. We validate our simulators using real traces collected during simulacrums of emergency situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.