Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This paper reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds.
Angiogenic factors produced by monocytes-macrophages are involved in the pathogenesis of chronic inflammatory disorders characterized by persistent angiogenesis. The possibility was tested that interleukin-8 (IL-8), which is a cytokine that is chemotactic for lymphocytes and neutrophils, is also angiogenic. Human recombinant IL-8 was potently angiogenic when implanted in the rat cornea and induced proliferation and chemotaxis of human umbilical vein endothelial cells. Angiogenic activity present in the conditioned media of inflamed human rheumatoid synovial tissue macrophages or lipopolysaccharide-stimulated blood monocytes was equally blocked by antibodies to either IL-8 or tumor necrosis factor-alpha. An IL-8 antisense oligonucleotide specifically blocked the production of monocyte-induced angiogenic activity. These data suggest a function for macrophage-derived IL-8 in angiogenesis-dependent disorders such as rheumatoid arthritis, tumor growth, and wound repair.
The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds.
Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro-and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-a/b activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-c and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3-RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world's population, and that siRNAs might induce unanticipated vascular or immune effects.Therapeutic application of long, double-stranded (ds)RNAmediated RNAi and sequence-specific gene silencing through RNAi by short synthetic RNA duplexes is challenging because mammalian cells do not uptake 'naked' siRNA (whether chemically modified or not) without cell-permeating entities [1][2][3][4] . To minimize systemic exposure, initial clinical trials of siRNA were launched using intraocular injection in patients with CNV. CNV, wherein the retina is invaded by choroidal vessels beneath the retinal pigmented epithelium (RPE), is a late stage of age-related macular degeneration that afflicts 30-50 million people globally. The preclinical bases for trials of naked VEGFA siRNA (Bevasiranib) or VEGFR1 siRNA (AGN211745/ siRNA-027) were single reports in mice 5,6 that such siRNAs suppressed laser-injury-induced CNV, a model predictive of efficacy in humans 7,8 . These findings were interpreted as anomalous examples of local delivery surmounting the impediment to intracellular entry 9-11 . Instead, we show in two animal models that suppression of neovascularization is a generic property of siRNAs independent of sequence, target and internalization.Sequence-independent angiogenesis suppression by siRNA Numerous synthetic non-targeted 21-nucleotide duplex siRNAs from multiple vendors, when injected into the vitreous humour of wild-type mice, uniformly and dose-dependently suppressed CNV (Fig. 1a, b and Supplementary Fig. 1). siRNAs targeting jellyfish green fluorescent ...
Impaired wound healing in the elderly presents a major clinical and economic problem. With the aging population growing in both number and percentage, the importance of understanding the mechanisms underlying age-related impairments in healing is increased. Normal skin exhibits characteristic changes with age that have implications for wound healing. Additionally, the process of wound healing is altered in aged individuals. Although historically healing in the aged was considered defective, there is now consensus that healing in the elderly is delayed but the final result is qualitatively similar to that in young subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.