Objectives To investigate the association between environmental tobacco smoke, plasma cotinine concentration, and respiratory cancer or death.
Environmental carcinogens contained in air pollution, such as polycyclic aromatic hydrocarbons, aromatic amines or N-nitroso compounds, predominantly form DNA adducts but can also generate interstrand cross-links and reactive oxygen species. If unrepaired, such lesions increase the risk of somatic mutations and cancer. Our study investigated the relationships between 22 polymorphisms (and their haplotypes) in 16 DNA repair genes belonging to different repair pathways in 1094 controls and 567 cancer cases (bladder cancer, 131; lung cancer, 134; oral-pharyngeal cancer, 41; laryngeal cancer, 47; leukaemia, 179; death from emphysema and chronic obstructive pulmonary disease, 84). The design was a case-control study nested within a prospective investigation. Among the many comparisons, few polymorphisms were associated with the diseases at the univariate analysis: XRCC1-399 Gln/Gln variant homozygotes [odds ratios (OR) = 2.20, 95% confidence intervals (CI) = 1.16-4.17] and XRCC3-241 Met/Met homozygotes (OR = 0.51, 95% CI = 0.27-0.96) and leukaemia. The recessive model in the stepwise multivariate analysis revealed a possible protective effect of XRCC1-399Gln/Gln in lung cancer (OR = 0.22, 95% CI = 0.05-0.98), and confirmed an opposite effect (OR = 2.47, 95% CI = 1.02-6.02) in the leukaemia group. Our results also suggest that the XPD/ERCC1-GAT haplotype may modulate leukaemia (OR = 1.28, 95% CI = 1.02-1.61), bladder cancer (OR = 1.38, 95% CI = 1.06-1.79) and possibly other cancer risks. Further investigations of the combined effects of polymorphisms within these DNA repair genes, smoking and other risk factors may help to clarify the influence of genetic variation in the carcinogenic process.
In cancer patients, plasma often contains mutant DNA released by cancer cells. We have assessed the significance of plasma DNA mutations for subsequent cancer development in healthy subjects in a large longitudinal prospective study. The European Prospective Investigation into Cancer and Nutrition study was analyzed with a nested case-control design. Cases were nonsmokers or ex-smokers for >10 years and newly diagnosed with lung, bladder, or upper aerodigestive tract cancers or leukemia accrued after a median follow-up of 6.3 years. Controls were matched 2:1 for follow-up, age, sex, area of recruitment, and smoking status. KRAS2 mutations were detected by mutant-enriched PCR and sequencing (n = 1,098). TP53 mutations were detected by denaturing high-performance liquid chromatography, temporal temperature gradient electrophoresis, and sequencing (n = 550). KRAS2 or TP53 mutations were detected in 13 of 1,098 (1.2%) and 20 of 550 (3.6%) subjects, respectively, 16 of whom developed cancer on average after 18.3 months of follow-up. Among 137 subjects who developed bladder cancer, 5 had KRAS2 mutations [odds ratio (OR), 4.25; 95% confidence interval (95% CI), 1.27-14.15] and 7 had TP53 mutations (OR, 1.81; 95% CI, 0.66-4.97). There was a nonsignificant trend for association between TP53 mutations and bulky adducts in lymphocyte DNA (OR, 2.78; 95% CI,. This is the first report of TP53 or KRAS2 mutations in the plasma of healthy subjects in a prospective study, suggesting that KRAS2 mutation is detectable ahead of bladder cancer diagnosis. TP53 mutation may be associated with environmental exposures. These observations have implications for monitoring early steps of carcinogenesis. (Cancer Res 2006; 66(13): 6871-6)
To estimate the relationship between air pollution and lung cancer, a nested case-control study was set up within EPIC (European Prospective Investigation on Cancer and Nutrition). Cases had newly diagnosed lung cancer, accrued after a median follow-up of 7 years among the EPIC exsmokers (since at least 10 years) and never smokers. Three controls per case were matched. Matching criteria were gender, age (65 years), smoking status, country of recruitment and time elapsed between recruitment and diagnosis.We studied residence in proximity of heavy traffic roads as an indicator of exposure to air pollution. In addition, exposure to air pollutants (NO 2 , PM10, SO 2 ) was assessed using concentration data from monitoring stations in routine air quality monitoring networks. Cotinine was measured in plasma. We found a nonsignificant association between lung cancer and residence nearby heavy traffic roads (odds ratio 5 1.46, 95% confidence interval, CI, 0.89-2.40).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.