Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological life-span extension. Inactivation of Sir2 causes uptake and catabolism of ethanol and upregulation of many stress-resistance and sporulation genes. These changes while sufficient to extend chronological life span in wild-type yeast require severe calorie restriction or additional mutations to extend life span of sir2Delta mutants. Our results demonstrate that effects of SIR2 on chronological life span are opposite to replicatve life span and suggest that the relevant activities of Sir2-like deacetylases may also be complex in higher eukaryotes.
Aging is believed to be a nonadaptive process that escapes the force of natural selection. Here, we challenge this dogma by showing that yeast laboratory strains and strains isolated from grapes undergo an age- and pH-dependent death with features of mammalian programmed cell death (apoptosis). After 90–99% of the population dies, a small mutant subpopulation uses the nutrients released by dead cells to grow. This adaptive regrowth is inversely correlated with protection against superoxide toxicity and life span and is associated with elevated age-dependent release of nutrients and increased mutation frequency. Computational simulations confirm that premature aging together with a relatively high mutation frequency can result in a major advantage in adaptation to changing environments. These results suggest that under conditions that model natural environments, yeast organisms undergo an altruistic and premature aging and death program, mediated in part by superoxide. The role of similar pathways in the regulation of longevity in organisms ranging from yeast to mice raises the possibility that mammals may also undergo programmed aging.
Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX) variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE) targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA) was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.