Prolactin (PRL) plays an important role in trophoblast growth, placental angiogenesis and immunomodulation within the feto-maternal interface, where different cell types secrete PRL and express its receptor. During pregnancy, inflammatory signalling is a deleterious event that has been associated with poor fetal outcomes. The placenta is highly responsive to the inflammatory stimulus; however, the actions of PRL in placental immunity and inflammation remain largely unknown. The aim of this study was to evaluate PRL effects on the TLR4/NFkB signalling cascade and associated inflammatory targets in cultured explants from healthy term human placentas. An in utero inflammatory scenario was mimicked using lipopolysaccharides (LPS) from Escherichia coli. PRL significantly reduced LPS-dependent TNF-α, IL-1β and IL-6 secretion and intracellular levels. Mechanistically, PRL prevented LPS-mediated upregulation of TLR-4 expression and NFκB phosphorylation. In conclusion, PRL limited inflammatory responses to LPS in the human placenta, suggesting that this hormone could be critical in inhibiting exacerbated immune responses to infections that could threaten pregnancy outcome. This is the first evidence of a mechanism for anti-inflammatory activity of PRL in the human placenta, acting as a negative regulator of TLR-4/NFkB signaling.
BackgroundDuring human pregnancy, infection/inflammation represents an important factor that increases the risk of developing preterm labor. The purpose of this study was to determine if pre-treatment with progesterone has an immunomodulatory effect on human placenta production of endotoxin-induced inflammation and degradation of extracellular matrix markers.MethodsPlacentas were obtained under sterile conditions from pregnancies delivered at term before the onset of labor by cesarean section. Explants from central cotyledons of 10 human placentas were pre-treated with different concentrations of progesterone (0.01, 01, 1.0 μM) and then stimulated with 1000 ng/mL of LPS of Escherichia coli. Cytokines TNFα, IL-1β, IL-6, IL-8, MIP-1α, IL-10 concentrations in the culture medium were then measured by specific ELISA. Secretion profile of MMP-9 was evaluated by ELISA and zymogram. Statistical differences were determined by one-way ANOVA followed by the appropriate ad hoc test; P < 0.05 was considered statistically significant.ResultsIn comparison to the explants incubated with vehicle, the LPS treatment led to a significant increase in the level of all cytokines. In comparison to the explants treated only with LPS, pre-treatment with 0.01–1.0 μM progesterone significantly blunted (73, 56, 56, 75, 25, 48 %) the secretion of TNF-α, IL-1β, IL-6, IL-8, MIP-1α, IL-10, respectively. The MMP-9 induced by LPS treatment was inhibited only with the highest concentration of progesterone. Mifepristone (RU486) blocked the immunosuppressive effect of progesterone.ConclusionsThe present results support the concept that progesterone could be part of the compensatory mechanism that limits the inflammation-induced cytotoxic effects associated with an infection process during gestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.