A previously unrecognized passive transport for pyridine dinucleotides has been described recently in the plasmamembrane of several mammalian cells. Despite elucidation of some functional and kinetic properties of this transport system, it is still undefined at the molecular level. Therefore, we have addressed the molecular characterization of the NAD+ transporter and identified it as connexin 43 (Cx43). This is a structural component of hexameric hemichannels that, when juxtaposed on adjacent cells, builds up intercellular gap junctions and mediates exchange of molecules between cells. However, the role of connexin hemichannels as potential pores in individual, noncoupled cells remains elusive. Bidirectional NAD+ transport in isolated Cx43-expressing mur ine 3T3 fibroblasts was affected by known modulators of connexin-mediated intercellular coupling and was completely inhibited by treatment of the cells with a Cx43-antisense oligonucleotide. NAD+ transport in proteoliposomes reconstituted with 3T3 membrane proteins was inhibited in the presence of a monoclonal anti-Cx43 antibody. Finally, Cx43 immunopurified to homogeneity was reconstituted in unilamellar proteoliposomes, which displayed full NAD+-transporting activity. This finding is the first evidence that connexin hemichannels can mediate transmembrane fluxes of a nucleotide in whole cells: The pleiotropy of NAD+-dependent cellular events, including redox reactions, signaling, and DNA repair, implicates Cx43 hemichannels in intercellular NAD+ trafficking, which suggests new paracrine functions of NAD.
CD38 is a bifunctional ectoenzyme, predominantly expressed on hematopoietic cells during differentiation, that catalyzes the synthesis (cyclase) and the degradation (hydrolase) of cyclic ADP-ribose (cADPR), a powerful calcium mobilizer from intracellular stores. Due to the well established role of calcium levels in the regulation of apoptosis, proliferation, and differentiation, the CD38/cADPR system seems to be a likely candidate involved in the control of these fundamental processes. CD38 is a type II transmembrane glycoprotein predominantly expressed on lymphocytes (1) but also present in a number of different cell types, including erythrocytes (2), hematopoietic progenitor cells (1), -pancreatic cells (3), and cerebral (4) and cerebellar (5) neurons. Immunologically, CD38 can be defined as an "orphan receptor" since its binding by specific monoclonal antibodies directed against ectocellular epitopes elicits cellular responses in lymphocytes, including proliferation, activation, and rescue from apoptosis (6, 7). The signal transduction pathways implicated in these events are under study, but phosphorylation/dephosphorylation reactions of target kinases have been already demonstrated (6,8,9). Biochemically, CD38 is a bifunctional ectoenzyme that catalyzes the synthesis of cADPR 1 from NAD ϩ and also its hydrolysis to ADPR (2, 10). Cyclic ADPR is a potent Ca 2ϩ mobilizer from intracellular stores, in invertebrate as well as in mammalian cells (11), and its presence has been described in most mammalian tissues (12).The widespread tissue distribution of the CD38/cADPR system suggests its involvement in the control of pivotal Ca 2ϩ -controlled functions like contraction, secretion, cell proliferation/differentiation, and apoptosis. However, the topological paradox of the ectocellular production of an intracellular Ca 2ϩ mobilizer has raised questions on both the immunological and the biochemical functions of the CD38/cADPR system (13, 14). Cell death has been advocated as a means for local increase in extracellular NAD ϩ concentrations, sufficient to elicit the production of cADPR by the ectoenzyme CD38; in this respect, nanomolar concentrations of NAD ϩ have been detected in plasma (15) and cerebellar interstitial fluid (5) suggesting the theoretical possibility of an extracellular production of cADPR by CD38 "in vivo." In few selected cell systems, i.e. murine B-lymphocytes (10), rat cerebellar granule cells (5), and rat osteoclasts (16), extracellular, exogenously added cADPR was demonstrated to elicit functional responses in intact cells, but most reported effects of cADPR on cellular functions require permeabilization of target cells to ensure binding of the nucleotide to its intracellular receptor(s).Internalization of membrane-bound CD38, as observed in human Namalwa B-lymphocytes upon incubation with NAD ϩ or thiol reagents, is followed by an increase of intracellular cyclase activity (insensitive to protein synthesis inhibitors) and of intracellular cADPR concentration ([cADPR] i ) (17), suggesting that...
CD38, a transmembrane glycoprotein widely expressed in vertebrate cells, is a bifunctional ectoenzyme catalyzing the synthesis and hydrolysis of cyclic ADP-ribose (cADPR). cADPR is a universal second messenger that releases calcium from intracellular stores. Since cADPR is generated by CD38 at the outer surface of many cells, where it acts intracellularly, increasing attention is paid to addressing this topological paradox. Recently, we demonstrated that CD38 is a catalytically active, unidirectional transmembrane transporter of cADPR, which then reaches its receptor-operated intracellular calcium stores. Moreover, CD38 was reported to undergo a selective and extensive internalization through non clathrin-coated endocytotic vesicles upon incubating CD38(+) cells with either NAD+ or thiol compounds: these endocytotic vesicles can convert cytosolic NAD into cADPR despite an asymmetric unfavorable orientation that makes the active site of CD38 intravesicular. Here we demonstrate that the cADPR-generating activity of the endocytotic vesicles results in remarkable and sustained increases of intracellular free calcium concentration in different cells exposed to either NAD+, or GSH, or N-acetylcysteine. This effect of CD38-internalizing ligands on intracellular calcium levels was found to involve a two-step mechanism: 1) influx of cytosolic NAD+ into the endocytotic vesicles, mediated by a hitherto unrecognized dinucleotide transport system that is saturable, bidirectional, inhibitable by 8-N3-NAD+, and characterized by poor dinucleotide specificity, low affinity, and high efficiency; 2) intravesicular CD38-catalyzed conversion of NAD+ to cADPR, followed by outpumping of the cyclic nucleotide into the cytosol and subsequent release of calcium from thapsigargin-sensitive stores. This unknown intracellular trafficking of NAD+ and cADPR based on two distinctive and specific transmembrane carriers for either nucleotide can affect the intracellular calcium homeostasis in CD38(+) cells.
CD38 is a type II transmembrane glycoprotein expressed in many vertebrate cells. It is a bifunctional ectoenzyme that catalyzes both the synthesis of Cyclic ADP-ribose (cADPR) from NAD+ and the degradation of cADPR to ADP-ribose by means of its ADP-ribosyl cyclase and cADPR-hydrolase activities, respectively. The cyclase also converts NGD+ to cyclic GDP-ribose (cGDPR), which is refractory to cADPR-hydrolase. cADPR, but not cGDPR, is a potent calcium mobilizer from intracellular stores. It has been demonstrated to be a new second messenger involved in the regulation of calcium homeostasis in many cell types, from plants to mammals. The number of physiological processes shown to be regulated by cADPR is steadily increasing. A topological paradox exists because ectocellularly generated cADPR acts intracellularly. Here we demonstrate that the catalytic functioning of CD38 is accompanied by a cADPR (cGDPR) -transporting activity across natural and artificial membranes. In resealed membranes from CD38(+) human erythrocytes, transport of catalytically generated cADPR or cGDPR was saturation dependent and occurred against a concentration gradient. Likewise, CD38-reconstituted proteoliposomes were active in concentrating NAD+ (NGD+) -derived cADPR (cGDPR) inside the vesicle compartment. Moreover, the cADPR-transporting activity in CD38 proteoliposomes prevented the hydrolase-catalyzed degradation to ADPR that occurs conversely with detergent-solubilized CD38, resulting in selective influx of cADPR. In the CD38 proteoliposomes, catalytically active CD38 exhibited monomeric, dimeric, and tetrameric structures. In CD38 sense- but not in antisense-transfected HeLa cells, externally added NAD+ resulted in significant, transient increases in cytosolic calcium. These data suggest that transmembrane juxtaposition of two or four CD38 monomers can generate a catalytically active channel for selective formation and influx of cADPR (cGDPR) to reach cADPR-responsive intracellular calcium stores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.