Transaminases are pyridoxal 5'-phosphate (PLP)-dependent enzymes that transfer amino-functions. The transaminase from Silicibacter pomeroyi (SpATA) exhibits a broad substrate spectrum. In this work we examined the effect of different conditions (light, buffer and PLP-concentration) on the stability of SpATA, as well as the causes for these effects. The enzyme was stored either in TRIS or CHES with 0-10 mM added PLP at 22 °C. The samples were either kept dark or they were exposed to light. The results show that invariably, all samples kept in darkness exhibited longer half-life times than the ones exposed to light. An increase in the half-life from 8 h to 720 h could be achieved solely by keeping the sample dark. Especially samples in CHES buffer inactivated faster in light the more PLP was present, due to the degradation of PLP. In TRIS however, an imine-bond between TRIS and PLP protects PLP from degradation.
Building blocks with amine functionality are crucial in the chemical industry. Biocatalytic syntheses and chemicals derived from renewable resources are increasingly desired to achieve sustainable production of these amines. As a result, renewable materials such as furfurals, especially furfurylamines like 5-(hydroxymethyl)furfurylamine (HMFA) and 2,5-di(aminomethyl)furan (DAF), are gaining increasing attention. In this study, we identified four different amine transaminases (ATAs) that catalyze the reductive amination of 5-(hydroxymethyl)furfural (HMF) and 2,5-diformylfuran (DFF). We successfully immobilized these ATAs on glutaraldehyde-functionalized amine beads using multiple binding and on amine beads by site-selective binding of the unique Cα-formylglycine within an aldehyde tag. All immobilized ATAs were efficiently reused in five repetitive cycles of reductive amination of HMF with alanine as co-substrate, while the ATA from Silicibacter pomeroyi (ATA-Spo) also exhibited high stability for reuse when isopropylamine was used as an amine donor. Additionally, immobilized ATA-Spo yielded high conversion in the batch syntheses of HMFA and DAF using alanine (87% and 87%, respectively) or isopropylamine (99% and 98%, respectively) as amine donors. We further demonstrated that ATA-Spo was effective for the reductive amination of HMF with alanine or isopropylamine in continuous-flow catalysis with high conversion up to 12 days (48% and 41%, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.