Omic science is rapidly growing and one of the most employed techniques to explore differential patterns in omic datasets is principal component analysis (PCA). However, a method to enlighten the network of omic features that mostly contribute to the sample separation obtained by PCA is missing. An alternative is to build correlation networks between univariately-selected significant omic features, but this neglects the multivariate unsupervised feature compression responsible for the PCA sample segregation. Biologists and medical researchers often prefer effective methods that offer an immediate interpretation to complicated algorithms that in principle promise an improvement but in practice are difficult to be applied and interpreted. Here we present PC-corr: a simple algorithm that associates to any PCA segregation a discriminative network of features. Such network can be inspected in search of functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted omic data in systems and precision biomedicine. We offer proofs of PC-corr efficacy on lipidomic, metagenomic, developmental genomic, population genetic, cancer promoteromic and cancer stem-cell mechanomic data. Finally, PC-corr is a general functional network inference approach that can be easily adopted for big data exploration in computer science and analysis of complex systems in physics.
Seasonal influenza virus infection has been associated with a variety of neurologic complications. We report a case of novel influenza A (H1N1) encephalitis in an infant aged 3 months with an upper respiratory infection, who presented seizures. The infection was confirmed in nasopharyngeal aspirate and cerebrospinal fluid. Treatment with oseltamivir was started. He was discharged without any neurologic sequelae.
Reference intervals are commonly used as a decision-making tool. In this review, we provide an overview on “big data” and reference intervals, describing the rationale, current practices including statistical methods, essential prerequisites concerning data quality, including harmonization and standardization, and future perspectives of the indirect determination of reference intervals using routine laboratory data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.