Bullfrog farming and trade practices are well-established, globally distributed, and economically valuable, but pose risks for biodiversity conservation. Besides their negative impacts on native amphibian populations as an invasive species, bullfrogs play a key role in spreading the frog-killing fungus Batrachochytrium dendrobatidis (Bd) in the natural environment. Bullfrogs are tolerant to Bd, meaning that they can carry high infection loads without developing chytridiomycosis. To test the potential of bullfrog farms as reservoirs for diverse and virulent chytrid genotypes, we quantified Bd presence, prevalence and infection loads across approximately 1,500 farmed bullfrogs and in the water that is released from farms into the environment. We also described Bd genotypic diversity within frog farms by isolating Bd from dozens of infected tadpoles. We observed individuals infected with Bd in all sampled farms, with high prevalence (reaching 100%) and high infection loads (average 71,029 zoospore genomic equivalents). Average outflow water volume from farms was high (60,000 L/day), with Bd zoospore concentration reaching approximately 50 million zoospores/L. Because virulent pathogen strains are often selected when growing in tolerant hosts, we experimentally tested whether Bd genotypes isolated from bullfrogs are more virulent in native anuran hosts compared to genotypes isolated from native host species. We genotyped 36 Bd isolates from two genetic lineages and found that Bd genotypes cultured from bullfrogs showed similar virulence in native toads when compared to genotypes isolated from native hosts. Our results indicate that bullfrog farms can harbor high Bd genotypic diversity and virulence and may be contributing to the spread of virulent genotypes in the natural environment. We highlight the urgent need to implement Bd monitoring and mitigation strategies in bullfrog farms to aid in the conservation of native amphibians.
Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.