Summary The Palaearctic Bombus ruderatus (in 1982/1983) and Bombus terrestris (1998) have both been introduced into South America (Chile) for pollination purposes. We here report on the results of sampling campaigns in 2004, and 2010-2012 showing that both species have established and massively expanded their range. 2. Bombus terrestris, in particular, has spread by some 200 km year À1 and had reached the Atlantic coast in Argentina by the end of 2011. Both species, and especially B. terrestris, are infected by protozoan parasites that seem to spread along with the imported hosts and spillover to native species. 3. Genetic analyses by polymorphic microsatellite loci suggest that the host population of B. terrestris is genetically diverse, as expected from a large invading founder population, and structured through isolation by distance. Genetically, the populations of the trypanosomatid parasite, Crithidia bombi, sampled in 2004 are less diverse, and distinct from the ones sampled later. Current C. bombi populations are highly heterozygous and also structured through isolation by distance correlating with the genetic distances of B. terrestris, suggesting the latter's expansion to be a main structuring factor for the parasite. 4. Remarkably, wherever B. terrestris spreads, the native Bombus dahlbomii disappears although the reasons remain unclear. Our ecological and genetic data suggest a major invasion event that is currently unfolding in southern South America with disastrous consequences for the native bumblebee species.
Oligolectic bees are specialists that collect pollen from one or a few closely related species of plants, while polylectic bees are generalists that collect pollen from both related and unrelated species of plants. Because of their more restricted range of floral hosts, it is expected that specialists persist in more isolated populations than do generalists. We present data on the population structure of two closely related bee species sampled from a super abundant floral host in the southern Atacama Desert. Pairwise comparisons of population subdivision over identical distances revealed that the specialist bee had significantly more differentiated populations in comparison to the generalist. Further, populations of the specialist had significantly less genetic variation, measured as observed and expected heterozgyosity, than those of the generalist. Our data support the hypothesis of decreased gene flow among populations of the specialist bee even at equivalent geographic distances. The resulting reductions in effective population size for specialists make them particularly prone to extinction due to both demographic and genetic reasons. Our findings have important implications for the conservation of bees and other specialist insects.
Oligolectic bees collect pollen from one or a few closely related species of plants, whereas polylectic bees visit a variety of flowers for pollen. Because of their more restricted range of host plants, it maybe expected that specialists exist in smaller, more isolated populations, with lower effective population sizes than generalists. Consequently, we hypothesized that oligolectic bees have reduced levels of genetic variation relative to related polylectic species. To test this hypothesis, we used five phylogenetically independent pairs of species in which one member was oligolectic and the other was polylectic. We assayed genetic variation in our species pairs at an average of 32 allozyme loci. Within each species pair, the oligolectic member had fewer polymorphic loci, lower average allelic richness, and lower average expected heterozygosity than its polylectic relative. Averaged over all species pairs, this corresponds to a 21% reduction in allelic richness, a 72% reduction in the proportion of polymorphic loci, and an 83% reduction in expected heterozygosity in specialists compared with generalists. Our data support the hypothesis of reduced effective population size in oligolectic bees and suggest that they may be more prone to extinction as a result. We suggest that in instances in which bee specialists are involved in mutually codependent relationships with their floral hosts, these mutualisms may be endangered for genetic and ecological reasons. Genética de la Conservación de Mutualismos Potencialmente en Peligro: Bajos Niveles de Variación Genética en Abejas Especialistas Versus GeneralistasResumen: Abejas oligolécticas colectan polen de una o varias especies de plantas cercanamente relacionadas, mientras que abejas polilécticas visitan una variedad de flores para polen. Debido a que su rango de plantas huésped es más restringido, puede esperarse que las especialistas existan en poblaciones más pequeñas y más aisladas, con menor tamaño poblacional efectivo, que las generalistas. Consecuentemente, planteamos la hipótesis de que abejas oligolécticas tienen niveles reducidos de variación genética en relación con especies polilécticas. Para probar esta hipótesis utilizamos cinco pares de especies filogenéticamente independientes en los que un miembro era oligoléctico y otro poliléctico. Analizamos la variación genética en nuestros pares de especies en un promedio de 32 loci de alozimas. En cada par de especies, el miembro oligoléctico tenía menos loci polimórficos, menor promedio de riqueza alélica y menor promedio de heterocigosidad esperada que su pariente poliléctico. Promediado en todos los pares de especies, esto corresponde a una reducción de #These two authors contributed equally to this paper.§Deceased. 196Conservation Genetics of Oligolectic Bees Packer et al.21% de la riqueza alélica, reducción de 72% en la proporción de loci polimórficos y una reducción de 83% en la heterocigosidad esperada en especialistas comparados con generalistas. Nuestros datos soportan la hipótesis de reducción en el tama...
We compare the diversity of bees in the Chilean fauna as understood from traditional taxonomy-based catalogues with that currently known from DNA barcodes using the BIN system informed by ongoing morphology-based taxonomic research. While DNA barcode surveys of the Chilean bee fauna remain incomplete, it is clear that new species can readily be distinguished using this method and that morphological differentiation of distinct barcode clusters is sometimes very easy. We assess the situation in two genera in some detail. In Lonchopria Vachal one "species" is readily separable into two BINs that are easily differentiated based upon male mandibular and genitalic morphology (characters generally used in this group) as well as female hair patterns. Consequently, we describe Lonchopria (Lonchopria) heberti Packer and Ruz, new species. For Liphanthus Reed, a large number of new species has been detected using DNA barcoding and considerable additional traditional morphological work will be required to describe them. When we add the number of BINs (whether identified to named species or not) to the number of Chilean bee species that we know have not been barcoded (both described and new species under study in our laboratories) we conclude that the bee fauna of Chile is substantially greater than the 436 species currently known. Spanish language abstract available as supplementary data .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.