This paper looks at the challenges and opportunities of implementing blockchain technology across banking, providing food for thought about the potentialities of this disruptive technology. The blockchain technology can optimize the global financial infrastructure, achieving sustainable development, using more efficient systems than at present. In fact, many banks are currently focusing on blockchain technology to promote economic growth and accelerate the development of green technologies. In order to understand the potential of blockchain technology to support the financial system, we studied the actual performance of the Bitcoin system, also highlighting its major limitations, such as the significant energy consumption due to the high computing power required, and the high cost of hardware. We estimated the electrical power and the hash rate of the Bitcoin network, over time, and, in order to evaluate the efficiency of the Bitcoin system in its actual operation, we defined three quantities: "economic efficiency", "operational efficiency", and "efficient service". The obtained results show that by overcoming the disadvantages of the Bitcoin system, and therefore of blockchain technology, we could be able to handle financial processes in a more efficient way than under the current system.
Abstract-This paper presents an agent-based artificial cryptocurrency market in which heterogeneous agents buy or sell cryptocurrencies, in particular Bitcoins. In this market, there are two typologies of agents, Random Traders and Chartists, which interact with each other by trading Bitcoins. Each agent is initially endowed with a finite amount of crypto and/or fiat cash and issues buy and sell orders, according to her strategy and resources. The number of Bitcoins increases over time with a rate proportional to the real one, even if the mining process is not explicitly modelled.The model proposed is able to reproduce some of the real statistical properties of the price absolute returns observed in the Bitcoin real market. In particular, it is able to reproduce the autocorrelation of the absolute returns, and their cumulative distribution function. The simulator has been implemented using object-oriented technology, and could be considered a valid starting point to study and analyse the cryptocurrency market and its future evolutions.
In January 3, 2009, Satoshi Nakamoto gave rise to the “Bitcoin Blockchain”, creating the first block of the chain hashing on his computer’s central processing unit (CPU). Since then, the hash calculations to mine Bitcoin have been getting more and more complex, and consequently the mining hardware evolved to adapt to this increasing difficulty. Three generations of mining hardware have followed the CPU’s generation. They are GPU’s, FPGA’s and ASIC’s generations. This work presents an agent-based artificial market model of the Bitcoin mining process and of the Bitcoin transactions. The goal of this work is to model the economy of the mining process, starting from GPU’s generation, the first with economic significance. The model reproduces some “stylized facts” found in real-time price series and some core aspects of the mining business. In particular, the computational experiments performed can reproduce the unit root property, the fat tail phenomenon and the volatility clustering of Bitcoin price series. In addition, under proper assumptions, they can reproduce the generation of Bitcoins, the hashing capability, the power consumption, and the mining hardware and electrical energy expenditures of the Bitcoin network.
In this paper, we present an analysis of the mining process of two popular assets, Bitcoin and gold. The analysis highlights that Bitcoin, more specifically its underlying technology, is a “safe haven” that allows facing the modern environmental challenges better than gold. Our analysis emphasizes that crypto-currencies systems have a social and economic impact much smaller than that of the traditional financial systems. We present an analysis of the several stages needed to produce an ounce of gold and an artificial agent-based market model simulating the Bitcoin mining process and allowing the quantification of Bitcoin mining costs. In this market model, miners validate the Bitcoin transactions using the proof of work as the consensus mechanism, get a reward in Bitcoins, sell a fraction of them to cover their expenses, and stay competitive in the market by buying and divesting hardware units and adjusting their expenses by turning off/on their machines according to the signals provided by a technical analysis indicator, the so-called relative strength index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.