Clonal hematopoiesis (CH) is an age-related condition predisposing to blood cancer and cardiovascular disease (CVD). Murine models demonstrate CH-mediated altered immune function and proinflammation. Low-grade inflammation has been implicated in the pathogenesis of osteoarthritis (OA), the main indication for total hip arthroplasty (THA). THA-derived hip bones serve as a major source of 'healthy' hematopoietic cells in experimental hematology. We prospectively investigated frequency and clinical associations of CH in 200 patients without known hematologic disease undergoing THA. Prevalence of CH was 50%, including 77 patients with CH of indeterminate potential (CHIP, defined as somatic variants with allele frequencies [VAF] ≥2%), and 23 patients harboring CH with lower mutation burden (VAF 1-2%). Most commonly mutated genes were DNMT3A (29.5%), TET2 (15.0%) and ASXL1 (3.5%). CHIP significantly associated with lower hemoglobin, higher mean corpuscular volume, prior/present malignant disease, and CVD. Strikingly, we observed a previously unreported association of CHIP with autoimmune diseases (AID; multivariate adjusted odds ratio, 6.6; 95% confidence interval [1.7, 30]; p=0.0081). These findings underscore the association between CH and inflammatory diseases. Our results have considerable relevance for management of patients with OA and AID or mild anemia, and question use of hip bone-derived cells as 'healthy' experimental controls.
The bone represents surprisingly dynamic structures that are subject to constant remodeling by the concerted action of bone-forming osteoblasts and bone-resorbing osteoclasts - two cell subsets of distinct developmental origin that are key in maintaining skeletal integrity throughout life. In general, abnormal bone remodeling due to dysregulated bone resorption and formation is an early event in the manifestation of various human bone diseases, such as osteopetrosis/osteoporosis and arthritis. But bone remodeling is also closely interrelated with lympho-hematopoietic homeostasis, as the bone marrow niche is formed by solid and trabecular bone structures that provide a framework for the long-term maintenance and differentiation of HSCs (>blood lineage cells and osteoclasts) and MSCs (>osteoblasts). Numerous studies in mice and humans have implicated innate and adaptive immune cells in the dynamic regulation of bone homeostasis, but despite considerable clinical relevance, the exact mechanisms of such immuno-bone interplay have remained incompletely understood. This holds particularly true for CD4+ regulatory T (Treg) cells expressing the lineage specification factor Foxp3: Foxp3+ Treg cells have been shown to play an indispensable role in maintaining immune homeostasis, but may also exert critical non-immune functions, which includes the control of metabolic and regenerative processes, as well as the differentiation of HSCs and function of osteoclasts. Here, we summarize our current knowledge on the T cell/bone interplay, with a particular emphasis on our own efforts to dissect the role of Foxp3+ Treg cells in bone and hematopoietic homeostasis, employing experimental settings of gain- and loss-of-Treg cell function. These data make a strong case that Foxp3+ Treg cells impinge on lympho-hematopoiesis through indirect mechanisms, i.e., by acting on osteoclast development and function, which translates into changes in niche size. Furthermore, we propose that, besides disorders that involve inflammatory bone loss, the modulation of Foxp3+ Treg cell function in vivo may represent a suitable approach to reinstate bone homeostasis in non-autoimmune settings of aberrant bone remodeling.
During the last decades, there has been increasing interest in the role of the university as a key stakeholder and agent in innovation and regional development. In the face of new technologies, especially growing digitalisation and new societal and economic challenges, this paper proposes to reconsider the role of the university in the innovation system. More particularly, we introduce the idea of a business model for the entrepreneurial university of the future and develop nine conceptual theses. The theses are based on four elements of a business model concept: value proposition, creation, delivery and capture. With the help of the nine theses, we aim to trigger new discussions regarding policy implications for the future university in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.