BackgroundThere is an urgent need for approaches to prevent and treat SARS-CoV-2 infection. Administration of soluble ACE2 protein acting as a decoy to bind to SARS-CoV-2 should limit viral uptake mediated by binding to membrane-bound full-length ACE2, and further therapeutic benefit should result from ensuring enzymatic ACE2 activity to affected organs in patients with COVID-19.MethodsA short variant of human soluble ACE2 protein consisting of 618 amino acids (hACE2 1–618) was generated and fused with an albumin binding domain (ABD) using an artificial gene encoding ABDCon, with improved albumin binding affinity. Human kidney organoids were used for infectivity studies of SARS-CoV-2 in a BSL-3 facility to examine the neutralizing effect of these novel ACE2 variants.ResultsWhereas plasma ACE2 activity of the naked ACE2 1–618 and ACE2 1–740 lasted about 8 hours, the ACE2 1–618-ABD resulted in substantial activity at 96 hours, and it was still biologically active 3 days after injection. Human kidney organoids express ACE2 and TMPRSS2, and when infected with SARS-CoV-2, our modified long-acting ACE2 variant neutralized infection.ConclusionsThis novel ACE2 1–618-ABD can neutralize SARS-CoV-2 infectivity in human kidney organoids, and its prolonged duration of action should ensure improved efficacy to prevent viral escape and dosing convenience.
Background: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. Methods: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2 1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice prior to intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. Results: Untreated animals became severely ill and all had to be humanely euthanized by day 6/7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain but virus was absent in the kidneys. However, some untreated animals had variable degrees of kidney proximal tubular injury with increased NGAL and TUNEL staining indicating attenuation of the proximal tubular brush border. In contrast, viral titers in the lung and brain were reduced or non-detectable in mice that received ACE2 1-618 DDCABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury Conclusions: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2 1- 618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that causes severe lung injury as well as variable degrees of moderate proximal tubular injury.
Despite evidence of multi-organ tropism of SARS-CoV-2 in patients with COVID-19, direct viral kidney invasion has been difficult to demonstrate. The question of whether SARS-CoV-2 can directly infect the kidney is relevant to the understanding of pathogenesis of acute kidney injury and collapsing glomerulopathy in COVID-19. Methodologies to document SARS-CoV-2 infection that have been used include immunohistochemistry, immunofluorescence, reverse transcriptase polymerase chain reaction (RT-PCR), in situ hybridization and electron microscopy. In our review of studies to date we found that SARS-CoV-2 in the kidney of patients with COVID-19 was detected in 18 of 94 (19%) by immuno-histochemistry, 71 of 144 (49%) by RT-PCR and 11 of 84 (13%) by in situ hybridization. In a smaller number of patients with COVID-19 examined by immunofluorescence, SARS-CoV-2 was detected in 10 of 13 (77%). In total, in kidneys from 102 of 235 patients (43.4%), the presence of SARS-CoV-2 was suggested by at least one of the methods used. Despite these positive findings, caution is needed as many other studies have been negative for SARS-CoV-2 presence and it should be noted that when detected it was only in kidneys obtained at autopsy. There is a clear need for studies from kidney biopsies, including those performed at early stages of the COVID-19 associated kidney disease. Development of tests to detect kidney viral infection in urine samples would be more practical as a non-invasive way to evaluate SARS CoV-2 infection during the evolution of COVID-19-associated kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.