The photochemical conversion of 200-500 nm layers of perhydropolysilazane --(SiH2-NH)n-- (PHPS) in the presence of oxygen into an SiOx network was studied. Different UV sources in the wavelength range of 160-240 nm, that is, 172 nm Xe2* and 222 nm KrCl* excimer, and 185 nm Hg low-pressure (HgLP) lamps were used for these purposes. The role of both ozone and O(1D) as well as of catalytic amounts of tertiary amines in the degradation process of PHPS and the formation of SiOx were studied. In this context, the kinetics of the entire reaction were elucidated and allowed both a continuous and discontinuous process to be established for the production of fully transparent, flexible barrier coatings. Barrier improvement factors (BIFs) of 400 were achieved with one single layer on 23 microm poly(ethyleneterephthalate) (PET), which translated into oxygen transmission rates (OTRs) of 0.20 cm3 m(-2) day(-1) bar(-1). Double layers prepared by this technique allowed the realization of OTRs of or=800.
A method for the determination of chlorophenols in soil samples using accelerated solvent extraction (ASE) with water as the solvent combined with solid-phase microextraction (SPME) and GC/MS has been developed. Important ASE parameters, such as extraction temperature and time, were optimized using a spiked wetland soil. The effect of small amounts of organic modifiers on the extraction yields was studied. An extraction temperature of 125 degrees C and 10 min extractions performed three times proved optimal. Two ASE-SPME procedures without and with an organic modifier (5% acetonitrile) were evaluated with respect to precision and detection limits (LOD). The reproducibility of replicate water extractions/SPME determinations (n = 6) was in the range 7-20% relative standard deviation for the nine chlorophenols investigated. LOD values in the low-ppb range were achieved for all chlorophenols. The ASE-SPME procedure presented here was applied to the determination of chlorophenols in soil samples taken from contaminated areas near Bitterfeld, Germany.
The vacuum-UV (VUV)-induced conversion of commercially available poly(1,1-dimethylsilazane-co-1-methylsilazane) into methyl-Si-O-Si networks was studied using UV sources at wavelengths around 172, 185, and 222 nm, respectively. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), X-ray photo electron spectroscopy (XPS), and Fourier transform infrared (FTIR) measurements, as well as kinetic investigations, were carried out to elucidate the degradation process. First-order kinetics were found for the photolytically induced decomposition of the Si-NH-Si network, the subsequent formation of the methyl-Si-O-Si network and the concomitant degradation of the Si-CH(3) bond, which were additionally independent of the photon energy above a threshold of about 5.5 eV (225 nm). The kinetics of these processes were, however, dependent on the dose actually absorbed by the layer and, in the case of Si-O-Si formation, additionally on the oxygen concentration. The release of ammonia and methane accompanied the conversion process. Quantum-chemical calculations on methyl substituted cyclotetrasilazanes as model compounds substantiate the suggested reaction scheme. Layers <100 nm in thickness based on mixtures of poly(1,1-dimethylsilazane-co-1-methylsilazane) and perhydropolysilazane (PHPS) were coated onto polyethylene terephthalate (PET) foils by a continuous roll to roll process and cured by VUV irradiation by using wavelengths <200 nm and investigated for their O(2) and water vapor-barrier properties. It was found that the resulting layers displayed oxygen and water vapor transmission rates (OTR and WVTR, respectively) of <1 cm(3) m(-2) d(-1) bar(-1) and <4 g m(-2) d(-1), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.