Rearrangements of the RET receptor tyrosine kinase gene generating RET͞PTC oncogenes are specific to papillary thyroid carcinoma (PTC), the most frequent thyroid tumor. Here, we show that the RET͞PTC1 oncogene, when exogenously expressed in primary normal human thyrocytes, induces the expression of a large set of genes involved in inflammation and tumor invasion, including those encoding chemokines (CCL2, CCL20, CXCL8, and CXCL12), chemokine receptors (CXCR4), cytokines (IL1B, CSF-1, GM-CSF, and G-CSF), matrix-degrading enzymes (metalloproteases and urokinase-type plasminogen activator and its receptor), and adhesion molecules (L-selectin). This effect is strictly dependent on the presence of the RET͞PTC1 Tyr-451 (corresponding to RET Tyr-1062 multidocking site). Selected relevant genes (CCL20, CCL2, CXCL8, CXCR4, L-selectin, GM-CSF, IL1B, MMP9, UPA, and SPP1͞OPN) were found up-regulated also in clinical samples of PTC, particularly those characterized by RET͞PTC activation, local extrathyroid spread, and lymph node metastases, when compared with normal thyroid tissue or follicular thyroid carcinoma. These results, demonstrating that the RET͞PTC1 oncogene activates a proinflammatory program, provide a direct link between a transforming human oncogene, inflammation, and malignant behavior.chemokines ͉ inflammation ͉ papillary thyroid carcinoma ͉ gene expression
We have introduced three Hirschsprung (HSCR) mutations localized in the tyrosine kinase domain of RET into the RET/PTC2 chimaeric oncogene which is capable of transforming NIH3T3 mouse fibroblasts and of differentiating pC12 rat pheochromocytoma cells. The three HSCR mutations abolished the biological activity of RET/PTC2 in both cell types and significantly decreased its tyrosine phosphorylation. By contrast, a rare polymorphism in exon 18 does not alter the transforming capability of RET/PTC2 or its tyrosine phosphorylation. These data suggest a loss of function effect of HSCR mutations which might act through a dominant negative mechanism. Our model system is therefore capable of discriminating between causative HSCR mutations and rare polymorphisms in the tyrosine kinase domain of RET.
RET/PTC oncogenes, generated by chromosomal rearrangements in papillary thyroid carcinomas, are constitutively activated versions of proto-RET, a gene coding for a receptor-type tyrosine kinase (TK) whose ligand is still unknown. RET/PTCs encode fusion proteins in which proto-RET TK and C-terminal domains are fused to different donor genes. The respective Ret/ptc oncoproteins display constitutive TK activity and tyrosine phosphorylation. We found that Ret/ptcs associate with and phosphorylate the SH2-containing transducer phospholipase Cgamma (PLCgamma). Two putative PLCgamma docking sites, Tyr-505 and Tyr-539, have been identified on Ret/ptc2 by competition experiments using phosphorylated peptides modelled on Ret sequence. Transfection experiments and biochemical analysis using Tyr-->Phe mutants of Ret/ptc2 allowed us to rule out Tyr-505 and to identify Tyr-539 as a functional PLCgamma docking site in vivo. Moreover, kinetic measurements showed that Tyr-539 is able to mediate high-affinity interaction with PLCgamma. Mutation of Tyr-539 resulted in a drastically reduced oncogenic activity of Ret/ptc2 on NIH 3T3 cells (75 to 90% reduction) both in vitro and in vivo, which correlates with impaired ability of Ret/ptc2 to activate PLCgamma. In conclusion, this paper demonstrates that Tyr-539 of Ret/ptc2 (Tyr-761 on the proto-RET product) is an essential docking site for the full transforming potential of the oncogene. In addition, the present data identify PLCgamma as a downstream effector of Ret/ptcs and suggest that this transducing molecule could play a crucial role in neoplastic signalling triggered by Ret/ptc oncoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.