Natural disasters cause enormous damage and losses every year, both economic and in terms of human lives. It is essential to develop systems to predict disasters and to generate and disseminate timely warnings. Recently, technologies such as the Internet of Things solutions have been integrated into alert systems to provide an effective method to gather environmental data and produce alerts. This work reviews the literature regarding Internet of Things solutions in the field of Early Warning for different natural disasters: floods, earthquakes, tsunamis, and landslides. The aim of the paper is to describe the adopted IoT architectures, define the constraints and the requirements of an Early Warning system, and systematically determine which are the most used solutions in the four use cases examined. This review also highlights the main gaps in literature and provides suggestions to satisfy the requirements for each use case based on the articles and solutions reviewed, particularly stressing the advantages of integrating a Fog/Edge layer in the developed IoT architectures.
Rivers close to populated or strategically important areas can cause damages and safety risks to people in the event of a flood. Traditional river flood monitoring systems like radar and ultrasonic sensors may not be completely reliable and require frequent on-site human interventions for calibration. This time-consuming and resource-intensive activity has attracted the attention of many researchers looking for highly reliable camera-based solutions. In this article we propose an automatic Computer Vision solution for river’s water-level monitoring, based on the processing of staff gauge images acquired by a V-IoT device. The solution is based on two modules. The first is implemented on the edge in order to avoid power consumption due to the transmission of poor quality frames, and another is implemented on the Cloud server, where the frames acquired and sent by the V-IoT device are processed for water level extraction. The proposed system was tested on sample images relating to more than a year of acquisitions at a river site. The first module of the proposed solution achieved excellent performances in discerning bad quality frames from good quality ones. The second module achieved very good results too, especially for what it concerns night frames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.