Apoptosis levels have been shown to predict tumor response to preoperative radiochemotherapy in rectal cancer. Recently, the prominent role of survivin, a structurally unique member of the inhibitor of apoptosis protein family, has been shown in colorectal cancer tumorigenesis and prognosis. In this study, we investigated whether survivin plays a direct role in mediating radiation resistance. We used short interfering RNA molecules to decrease survivin in radioresistant SW480 and intermediately radioresistant HCT-15 colorectal cancer cells. This resulted in a significant decrease of survivin mRNA and protein expression with a maximum at 24 to 48 hours after transfection. If irradiated during this sensitive period, an increased percentage of apoptotic cells and an increased caspase 3/7 activity in parallel with a decreased cell viability and a reduced clonogenic survival was shown. These effects were more pronounced in the radioresistant SW480 cell line with a radiation-induced cytotoxicity enhancement factor at 10% and 50% survival of 1.8 to 2.2 for SW480 and 1.5 to 1.7 for HCT-15, respectively. Furthermore, transfection with survivin short interfering RNA increased levels of G 2 -M arrest and levels of DNA double-strand breaks in irradiated cells. These observations indicate that cell cycle and DNA repair mechanisms may be associated with apoptosis induction in tumor cells that are otherwise resistant to killing by radiation. In a translational study of 59 patients with rectal cancer treated with a combination of radiotherapy and chemotherapy, increased survivin expression was inversely related to the levels of apoptosis, and was also associated with a significantly higher risk of a local tumor recurrence. (Cancer Res 2005; 65(11): 4881-7)
BackgroundTumour infiltrating lymphocytes (TIL) are generally considered to represent a host immune response directed against tumour antigens. TIL are also increasingly recognised as possible prognostic parameters. However, the effects observed are variable indicating that results cannot be extrapolated from type of tumour to another. Moreover, it has been suggested that primary solid tumours may be ignored by the immune system and that a meaningful immune response is only mounted in regional lymph nodes.MethodsWe have examined the local distribution of immune cells in tumour-related compartments in head and neck squamous cell carcinomas (HNSCC). In a second step, the prognostic impact of these cells on disease-free survival (DFS) was analysed. A total of 198 tissue cores from 33 patients were evaluated using tissue mircroarray technique and immunohistochemistry. Tumour-infiltrating immune cells were identified using antibodies specific for CD3, CD8, GranzymeB, FoxP3, CD20 and CD68 and quantified using an image analysis system.ResultsWe demonstrate a relative expansion of FoxP3+ regulatory T-cells (Treg) and of cytotoxic T-cells among tumour infitrating T-cells. We also show that intratumoural CD20+ B-cells are significantly more frequent in metastatic deposits than in primary tumours. Furthermore, we observed a reduced number of peritumoural CD8+ T-cells in metastatic lymph nodes as compared to univolved regional nodes suggesting a local down-modulation of cellular immunity. All other immune cells did not show significant alterations in distribution. We did not observe an association of tumour infiltrating immune cells at the primary site with outcome. However, increased numbers of intraepithelial CD8+ TIL in metastatic tumours as well as large numbers of peritumoural B-cells in lymph node metastases were associated with favourable outcome. Unexpectedly, no effect on patient outcome was observed for Treg in any compartment.ConclusionOur results suggest that alterations in lymphocyte distribution in regional lymph nodes rather than at the primary tumour site may be relevant for patient prognosis. Moreover, we demonstrate that in addition to cellular immunity humoral immune responses may be clinically relevant in anti-tumour immunity.
BackgroundRecent evidence suggests that CD4+CD25+FoxP3+ regulatory T-cells (Treg) may be responsible for the failure of host anti-tumour immunity by suppressing cytotoxic T- cells. We assessed the prognostic significance of tumour infiltrating lymphocytes (TIL) in intestinal-type gastric cardiac cancer.MethodsTumour infiltrating lymphocyte (TIL) subsets and tumour infiltrating macrophages (TIM) were investigated in 52 cases using tissue microarrays. The interrelationship between the cell populations (CD3+, CD8+, CD20+, CD68+, GranzymeB+, FoxP3+) in different compartments and NED-survival was investigated (median follow-up time: 61 months).ResultsIntraepithelial infiltration with TIL and TIM including Treg was generally low and not related to NED-survival. However, patients with large numbers of FoxP3+ Treg in the tumour stroma (>125.9 FoxP3+TILs/mm2) had a median survival time of 58 months while those with low FoxP3+ TIL counts (<125.9 FoxP3+TILs/mm2) had a median survival time of 32 months (p = 0.006). Patients with high versus low stromal CD68+/FoxP3+ cell ratios in primary tumour displayed median survivals of 32 and 55 months, respectively (p = 0.008).ConclusionOur results suggest that inflammatory processes within the tumour stroma of gastric intestinal-type adenocarcinomas located at the gastric cardia may affect outcome in two ways. Tumour-infiltrating macrophages are likely to promote carcinogenesis while large numbers of Treg are associated with improved outcome probably by inhibiting local inflammatory processes promoting carcinogenesis. Thus, inhibition of Treg may not be a feasible treatment option in gastric adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.