Understanding of population dynamics in a fragmented habitat is an issue of considerable importance. A natural modelling framework for these systems is spatially discrete. In this paper, we consider a predator-prey system that is discrete both in space and time, and is described by a Coupled Map Lattice (CML). The prey growth is assumed to be affected by a weak Allee effect and the predator dynamics includes intra-specific competition. We first reveal the bifurcation structure of the corresponding non-spatial system. We then obtain the conditions of diffusive instability on the lattice. In order to reveal the properties of the emerging patterns, we perform extensive numerical simulations. We pay a special attention to the system properties in a vicinity of the Turing-Hopf bifurcation, which is widely regarded as a mechanism of pattern formation and spatiotemporal chaos in space-continuous systems. Counter-intuitively, we obtain that the spatial patterns arising in the CML are more typically stationary, even when the local dynamics is oscillatory. We also obtain that, for some parameter values, the system's dynamics is dominated by long-term transients, so that the asymptotical stationary pattern arises as a sudden transition between two different patterns. Finally, we argue that our findings may have important ecological implications.
Abstract. Understanding of spatiotemporal patterns arising in invasive species spread is necessary for successful management and control of harmful species, and mathematical modeling is widely recognized as a powerful research tool to achieve this goal. The conventional view of the typical invasion pattern as a continuous population traveling front has been recently challenged by both empirical and theoretical results revealing more complicated, alternative scenarios. In particular, the so-called patchy invasion has been a focus of considerable interest; however, its theoretical study was restricted to the case where the invasive species spreads by predominantly short-distance dispersal. Meanwhile, there is considerable evidence that the long-distance dispersal is not an exotic phenomenon but a strategy that is used by many species. In this paper, we consider how the patchy invasion can be modified by the effect of the long-distance dispersal and the effect of the fat tails of the dispersal kernels.
A general mathematical model for population dispersal featuring long range taxis is presented and exemplified by the dispersal episode of the Africanized honey bees (Apis mellifera adansonii) throughout the American Continent. The mathematical model is a discrete-time and nonlocal model represented by an integrodifference recursion. A new taxis concept is defined and introduced into the mathematical model by an appropriate modification of the redistribution kernel. The model is capable of predicting the natural barrier for the expansion of the Africanized honey bees in the southern part of the Continent due to low winter temperatures. It also describes a sensitive expansion velocity with respect to the quality of resources, which can explain the AHB's astounding spread rate, by using two different kinds of population dynamics strategies, one for a resourceful environment and the other for poor regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.