Numerical tests at high Reynolds number flows were taken on circular cylinder placed near and parallel to a moving ground. A moving ground running at the same speed as the free stream eliminates the confusing effects of the boundary layer formed on the ground being, therefore, more effective to establish a better understanding of the relationship between complete vortex shedding suppression and surface roughness. A detailed quantitative measurement of the flow field around the cylinder using Lagrangian vortex method with roughness model was carried out. The effect of higher surface roughness heights is studied because it introduces greater instabilities in the boundary layer of bluff bodies. The purpose is to investigate supercritical flow patterns from subcritical Reynolds number flow simulations. The present results are compared against those measured for smooth cylinder under the same flow conditions. It is found that certain critical gap ratio between the rougher cylinder bottom and the moving wall significantly reduces the drag force. The lift force points away from the wall plane. The full vortex shedding suppression is successfully anticipated. In addition, the Strouhal number vanishes. The contribution of this research is to report that von Kámán-type vortex shedding totally ceases and instead two nearly parallel shear layers are formed behind the cylinder in moving ground when employing two-dimensional modeling of roughness. Previous numerical results for flow around smooth cylinder placed closer to the moving ground did not capture the behavior of Strouhal number equal to zero. Unfortunately, there is a lack of experimental results for rough cylinder near a moving wall, which motives the present study.
A discrete vortex method is implemented with a hybrid control technique of vortex shedding to solve the problem of the two-dimensional flow past a slightly rough circular cylinder in the vicinity of a moving wall. In the present approach, the passive control technique is inspired on the fundamental principle of surface roughness, promoting modifications on the cylinder geometry to affect the vortex shedding formation. A relative roughness size of ε*/d* = 0.001 (ε* is the average roughness and d* is the outer cylinder diameter) is chosen for the test cases. On the other hand, the active control technique uses a wall plane, which runs at the same speed as the free stream velocity to contribute with external energy affecting the fluid flow. The gap-to-diameter varies in the range from h*/d* = 0.05 to 0.80 (h* is the gap between the moving wall and the cylinder bottom). A detailed account of the time history of pressure distributions, simultaneously investigated with the time evolution of forces, Strouhal number behavior, and boundary layer separation are reported at upper-subcritical Reynolds number flows of Re = 1.0 × 105. The saturation state of the numerical simulations is demonstrated through the analysis of the Strouhal number behavior obtained from temporal history of the aerodynamic loads. The present work provides an improvement in the prediction of Strouhal number than other studies no using roughness model. The aerodynamic characteristics of the cylinder, as well as the control of intermittence and complete interruption of von Kármán-type vortex shedding have been better clarified.
We analyze the kinematics of electron-positron production in a photon-photon interaction when one has a modification of the special relativistic kinematics as a power expansion in the inverse of a new high-energy scale. We derive the equation for the threshold energy of this reaction to first order in this expansion, including the effects due to a modification of the energy-momentum conservation equation. In contrast with the Lorentz invariance violation case, a scale of the order of a few TeV is found to be compatible with the observations of very high-energy cosmic gamma rays in the case of a modification compatible with the relativity principle.
a b s t r a c tThe two-dimensional viscous incompressible fluid flow around a circular cylinder near a moving ground is numerically simulated. In a moving ground one eliminates the influence of the ground boundary layer, which is a crucial factor in the numerical simulation of the flow around a body moving in a close vicinity to a flat ground. A Lagrangian mesh-free vortex method is used to calculate global and local quantities of high Reynolds number flow of 1.0 Â 10 5 . This method is modified to take into account the sub-grid scale phenomena through a second-order velocity structure function model adapted to the Lagrangian scheme. In the present algorithm vortices with a Lamb core are generated only on the circular cylinder surface to ensure that the no-slip condition is satisfied and that the circulation is conserved. On the ground it is only sufficient to ensure the impermeability condition. Based on the experimental results available in the literature, the critical drag behaviour was found to be directly related to a global change in the near wake structure of the cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.