ABSTRACT.This study aimed to analyze the robustness of mixed models for the study of genotype-environment interactions (G x E). Simulated unbalancing of real data was used to determine if the method could predict missing genotypes and select stable genotypes. Data from multienvironment trials containing 55 maize hybrids, collected during the 2005-2006 harvest season, were used in this study. Analyses were performed in two steps: the variance components were estimated by restricted maximum likelihood, using the expectation-maximization (EM) algorithm, and factor analysis (FA) was used to calculate the factor scores and relative position of each genotype in the biplot. Random unbalancing of the data was performed by removing 10, 30, and 50% of the plots; the scores were then re-estimated using the FA model. It was observed that 10, 30, and 50% unbalancing exhibited mean correlation values of 0.7, 0.6, and 0.56, respectively. Overall, the genotypes classified as stable in the biplot had smaller prediction error sum of squares (PRESS) value and prediction 14263 Factor analysis using mixed models ©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 14 (4): 14262-14278 (2015) amplitude of ellipses. Therefore, our results revealed the applicability of the PRESS statistic to evaluate the performance of stable genotypes in the biplot. This result was confirmed by the sizes of the prediction ellipses, which were smaller for the stable genotypes. Therefore, mixed models can confidently be used to evaluate stability in plant breeding programs, even with highly unbalanced data.
The additive main effects and multiplicative interaction (AMMI) model is frequently applied in plant breeding for studying the genotype × environment (G × E) interaction. One of the main difficulties related to this method of analysis is the incorporation of inference to the bilinear terms that compose the biplot representation. This study aimed to incorporate credible intervals for the genotypic and environmental scores in the AMMI model by using an informative prior for the genotype effect. This approach differs from the Bayesian methods that have been presented so far, which assume the same restrictions as the fixed effects model. The method was exemplified by using data from a study with 55 maize hybrids in nine different environments for which variable being studied was the yield of unhusked ears. Our results demonstrated that the credible intervals allowed for the identification of genotypes and environments that did not contribute to the G × E interaction. In addition, it facilitated recognition of homogeneous subgroups of genotypes and environments (with respect to the effect of the interaction) and the adaptability of genotypes to specific environments of great interest to breeders. The posterior distributions of singular vectors were bimodal but with the same density peaks in absolute value. This reflects the arbitrary choice of signs of the main component that was used in different mathematical algorithms. Although our data set was based on unrelated single cross hybrids, the choice of genotypes as random effects enabled the Bayesian AMMI to accommodate the additive and nonadditive relationship matrices. Additionally, the flexibility of the analysis facilitated working with unbalanced data and the incorporation of heterogeneity of variances.
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior distribution retaining more GEI pattern in the first components and discarding noise without Gaussian assumption as requested in F-based tests or deal with parametric problems as observed in traditional AMMI shrinkage method.
ABSTRACT. The additive main effects and multiplicative interaction (AMMI) and the genotype main effects and genotype x environment interaction (GGE) models stand out among the linear-bilinear models used in genotype x environment interaction studies. Despite the advantages of their use to describe genotype x environment (AMMI) or genotype and genotype x environment (GGE) interactions, these methods have known limitations that are inherent to fixed effects models, including difficulty in treating variance heterogeneity and missing data. Traditional biplots include no measure of uncertainty regarding the principal components. The present study aimed to apply the Bayesian approach to GGE biplot models and assess the implications for selecting stable and adapted genotypes. Our results demonstrated that the Bayesian approach applied to GGE models with non-informative priors was consistent with the traditional GGE biplot analysis, although the credible region incorporated into the biplot enabled distinguishing, based on probability, the performance of genotypes, and their relationships with the environments in the biplot. Those regions also enabled the identification of groups of genotypes and environments with similar effects in terms of adaptability and stability. The relative position of genotypes and environments in biplots is highly affected by the experimental accuracy. Thus, incorporation of uncertainty in biplots is a key tool for breeders to make decisions regarding stability selection and adaptability and the definition of mega-environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.