Schistosoma mansoni is the most widespread of the human-infecting schistosomes, present in 54 countries, predominantly in Africa, but also in Madagascar, the Arabian Peninsula, and the Neotropics. Adult-stage parasites that infect humans are also occasionally recovered from baboons, rodents, and other mammals. Larval stages of the parasite are dependent upon certain species of freshwater snails in the genus Biomphalaria, which largely determine the parasite's geographical range. How S. mansoni genetic diversity is distributed geographically and among isolates using different hosts has never been examined with DNA sequence data. Here we describe the global phylogeography of S. mansoni using more than 2500 bp of mitochondrial DNA (mtDNA) from 143 parasites collected in 53 geographically widespread localities. Considerable within-species mtDNA diversity was found, with 85 unique haplotypes grouping into five distinct lineages. Geographical separation, and not host use, appears to be the most important factor in the diversification of the parasite. East African specimens showed a remarkable amount of variation, comprising three clades and basal members of a fourth, strongly suggesting an East African origin for the parasite 0.30-0.43 million years ago, a time frame that follows the arrival of its snail host. Less but still substantial variation was found in the rest of Africa. A recent colonization of the New World is supported by finding only seven closely related New World haplotypes which have West African affinities. All Brazilian isolates have nearly identical mtDNA haplotypes, suggesting a founder effect from the establishment and spread of the parasite in this large country.
The historical phylogeography of the two most important intermediate host species of the human blood fluke Schistosoma mansoni, B. glabrata in the New World, and B. pfeifferi in the Old World, was investigated using partial 16S and ND1 sequences from the mitochondrial genome. Nuclear sequences of an actin intron and internal transcribed spacer (ITS)-1 were also obtained, but they were uninformative for the relationships among populations. Phylogenetic analyses based on mtDNA revealed six well-differentiated clades within B. glabrata: the Greater Antilles, Venezuela and the Lesser Antilles, and four geographically overlapping Brazilian clades. Application of a Biomphalaria-specific mutation rate gives an estimate of the early Pleistocene for their divergence. The Brazilian clades were inferred to be the result of fragmentation, due possibly to climate oscillations, with subsequent range expansion producing the overlapping ranges. Within the Venezuela and Lesser Antilles clade, lineages from each of these areas were estimated to have separated approximately 740 000 years ago. Compared to B. glabrata, mitochondrial sequences of B. pfeifferi are about 4x lower in diversity, reflecting a much younger age for the species, with the most recent common ancestor of all haplotypes estimated to have existed 880 000 years ago. The oldest B. pfeifferi haplotypes occurred in southern Africa, suggesting it may have been a refugium during dry periods. A recent range expansion was inferred for eastern Africa less than 100 000 years ago. Several putative species and subspecies, B. arabica, B. gaudi, B. rhodesiensis and B. stanleyi, are shown to be undifferentiated from other B. pfeifferi populations.
Estudou-se a evolução dos esporocistos de Shistosoma mansoni das linhagens BH e SJ respectivamente em Biomphalaria glabrata e Biomphalaria tenagophila. Utilizando-se cortes histológicos foram avaliados o aspecto e número de esporocistos primários desde a primeira até a oitava semana de infecção, a contar do dia em que cada molusco foi exposto a 100 miracídios. No decorrer da primeira semana constataram-se diferenças significativas entre as linhagens estudadas quanto ao número e aspecto dos esporocistos primários, A distribuição por órgãos e a evolução dos esporocistos foi observada até a fase de formação das cercárias infectantes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.