Problem statement: In the operation of an Electric Power System (EPS), it has been usual to provide reactive power injection to avoid an under-voltage bus condition. In some situations an adequate voltage profile will not be a guarantee against Voltage Collapses (VCs) that may cause blackouts as seen in many occurrences around the world. The repeatedly injection of reactive power can turn a bus into a characteristic too much capacitive. Under this condition and in the presence of a considerable percentage of the constant power load type, there will be a high risk of a VC. Any of the indices proposed in the literature as VC Proximity Indicators (VCPIs) may alert the operator about the risk. Approach: In order to elucidate the problem stated, simulations were performed using MatLab/SimPowerSystems. It was used a basic example system composed by an infinite-bus feeding, through a large impedance line, a bus load whose power could be increased in ramp manner. It is also included a shunt capacitive compensation at the load bus every time the voltage value reaches 0.9 pu. Therefore, the VC risk increase could be shown by means of graphic results and the indications of some VCPIs sensitivity indices (including the new proposed index). Results: The graphics obtained in this study is a contribution to illustrate the voltage collapse risk problem when dealing with adjustments of voltage profile to meet the system requirements. Also, a VCPI sensitivity indicator using apparent load power was tested. The results have shown that all VCPI responses are very similar for a given case and electric system. Conclusion/Recommendations: Any VCPI information can help in the decision stage between either more reactive power injection or load shedding. A routine can also be developed for a supervisory program in order to alert the operator about VC risks
Problem statement: Under-Voltage Load Shedding (UVLS) protection of Electric Power Systems (EPS) is frequently used against Voltage Collapse (VC), however when there is automatic bus voltage regulation with excessive capacitive compensation, the UVLS scheme may not trip. In this case, load shedding must be based in a Voltage Collapse Proximity Indicator (VCPI). Many UVLS procedures may not be appropriate today. Approach: In order to elucidate the problem stated, several studies were carried out using MatLab/SimPowerSystems. In the first case, it was simulated a reduced electric system consisting of an infinite-bus feeding a load through a large impedance line. Two other cases were simulated now including a fixed capacitive impedance (representing a saturated SVC or similar) with 25 and 60 MVAr, both with a generator regulating the load bus voltage. Graphic curves representing the load bus voltage versus time were obtained with the application of a ramp power load. Results: In all cases the curves showed if there was sufficient time to command the UVLS scheme. The usual UVLS criteria failed for the third case. As the capacitive reactive power of the saturated compensation devices was increased, their equivalent capacitance, corresponding to the sum of maximum MVAr capacities, grows. The load demand increase, after MVAr saturation, can cause a voltage decrement which is too fast for UVLS adequate operation. Conclusion/Recommendations: Based in past experiences, any operator could be confident on existing UVLS protection of some area, but a VC can occur with the current situation without UVLS trip, as stated. It was suggested to check the current UVLS operation conditions, especially in areas where there was a growth of both load demand and reactive power resources. When UVLS method is found ineffective, then a suggestion is to replace it by a technique based upon some VCPI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.