We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.
Essential oil from Eugenia dysenterica leaves was able to inhibit both the diarrhoea and enteropooling induced by castor oil; however, the distance travelled by charcoal meal in the intestine was not change. These data suggest that the antidiarrhoeic effect of the essential oil from E. dysenterica leaves is related to its ability to inhibit intestinal secretion and/or to increase intestinal absorption.
Abstract-Angiotensin-converting enzyme (kininase II [ACE]) inhibitors are capable of potentiating bradykinin (BK) effects by enhancing the actions of bradykinin on B 2 receptors independent of blocking its inactivation. To investigate further the importance of ACE kininase activity on BK-induced vasodilation, we investigated the effect of inhibiting ACE, as well as other kininases, on both BK metabolism and vasodilator effect in preparations that exhibit increased ACE activity. Mesenteric arterial beds obtained from 1-kidney, 1-clip hypertensive rats presented augmented ACE and angiotensin I converting activities compared with normotensive rats. The isolated and perfused mesenteric beds were exposed to BK for 15 minutes in the absence or in the presence of kininase inhibitors; then, the perfusate was collected for analysis of the products of BK metabolism by high-performance liquid chromatography. BK was metabolized to the fragments BK(1-8), BK(1-7), and BK(1-5), and the recovery of intact BK was reduced by 47% in the hypertensive group. Recovery of BK was increased in both groups in the presence of a kininase I inhibitor and in the hypertensive group by neutral endopeptidase 24.11 inhibitor; however, ACE inhibition did not affect BK metabolism in both groups. In contrast, only the ACE inhibitor potentiated the vasodilator effect of BK in a mesenteric bed preconstricted with phenylephrine; the increase in BK effect, nevertheless, was not greater in arteries from hypertensive rats that presented an increased ACE activity when compared with those in the normotensive group. These data demonstrated that ACE inhibitor-induced potentiation of BK vasodilator effects is not related to their actions on BK degradation. Key Words: bradykinin Ⅲ ACE activity Ⅲ kininase I Ⅲ endopeptidases Ⅲ ACE inhibitor T he nonapeptide bradykinin (BK) has important pharmacological effects on blood vessels, heart, and kidney; among these, the most conspicuous is the transient hypotensive effect when BK is administered into the systemic circulation in all of the species studied. 1 This effect results from resistance vessel dilation in several beds mediated by the release of endothelial relaxing factors after the activation of B 2 receptors. 2,3 The remarkably short half-life of BK in vivo has been attributed to the rapid enzymatic degradation by several peptidases (collectively known as "kininases") present in plasma and tissues. The role that a particular kininase plays in the metabolism of BK depends on its localization and the presence of other peptidases in plasma or tissue. The predominant kininases that degrade BK in most tissues are the metallopeptidases kininase II (angiotensinconverting enzyme [ACE]), kininase I (carboxypeptidase M and N), and neutral endopeptidase 24.11 (NEP). 4 -7 ACE is primarily a surface enzyme that removes the C-terminal dipeptide from BK, which leads to its complete inactivation. ACE eventually cleaves further its primary metabolite, BK(1-7), into the shorter fragment, BK(1-5). NEP, another membrane-bound pe...
We investigated the psychostimulant, rewarding, and anxiolytic-like effects of pulegone. Possible interactions between pulegone and menthol concerning their psychostimulant effect were also analyzed. General mouse activity after pulegone treatment, and the interacitons between pulegone and menthol, were determined in the open field. The anxiolytic-like activity, motor coordination and strength force were evaluated using the elevated plus maze (EPM), rotarod test and grasping test, respectively. The motivational properties of pulegone were evaluated by pairing the drug effects on the mice with the least preferred compartment (previously determined) of a conditioned place preference (CPP) apparatus. Pulegone increased mouse locomotor activity and immobilization time. Verapamil, but not diltiazem, haloperidol or picrotoxin, decreased the psychostimulation induced by pulegone. Pulegone also decreased grooming and rearing behaviors and caused motor incoordination and weakness at high doses. Pulegone increased the time spent by mice in the open arms of the EPM, and flumazenil pre-treatment did not alter this effect. Pulegone either produced no CPP or induced conditioned place aversion. The changes in mouse ambulatory activity caused by the association of pulegone with menthol were either lower than those predicted by the theoretical curve or not different from the predicted values. Therefore, pulegone induces a verapamil-sensitive psychostimulant effect that appears to independ on the opening of L-type calcium channels. Pulegone has negative reinforcing properties and seems to possess anxiolytic-like actions unrelated to the benzodiazepine site of the γ-aminobutyric acid type A (GABA A ) receptor. Finally, pulegone might act in an addictive or synergic way with menthol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.