The cAMP-PKA signaling pathway plays an important role in many biological processes including glycogen metabolism. In this work we investigated its role in the Neurospora crassa glycogen metabolism control using mutant strains affected in components of the pathway, the cr-1 strain deficient in adenylyl cyclase activity therefore has the PKA pathway not active, and the mcb strain a temperature-sensitive mutant defective in the regulatory subunit of PKA therefore is a strain with constitutively active PKA. We analyzed the expression of the gene encoding glycogen synthase (gsn), the regulatory enzyme in glycogen synthesis as a potential target of the regulation. The cr-1 strain accumulated, during vegetative growth, glycogen levels much higher than the wild type strain indicating a role of the PKA pathway in the glycogen accumulation. The gsn transcript was not increased in this strain but the GSN protein was less phosphorylated "in vitro", and therefore more active, suggesting that the post-translational modification of GSN is likely the main mechanism controlling glycogen accumulation during vegetative growth. Heat shock down-regulates gsn gene transcription in the two mutant strains, as well as in the wild type strain, suggesting that the PKA pathway may not be the only pathway having a direct role in gsn transcription under heat shock. DNA-protein complexes were formed between the STRE motif in the gsn promoter and nuclear proteins from heat-shocked mycelium. However STRE was not able to induce transcription of a reporter gene in Saccharomyces cerevisiae, suggesting that the motif might be involved in a different way of regulation in the N. crassa gene expression under heat shock. The CRE-like DNA elements present in the gsn promoter were shown to be bound by different proteins from the PKA mutant strains. The DNA-protein complexes were observed with proteins from the strains grown under normal condition and under heat shock indicating the functionality of this DNA element. In this work we presented some evidences that the PKA signaling pathway regulates glycogen metabolism in N. crassa in a different way when compared to the well-characterized model of regulation existent in S. cerevisiae.
The compilation of all protein structural data on TA systems in one platform is highly useful for researchers interested in this content. BtoxDB is publicly available at http://www.gurupi.uft.edu.br/btoxdb.
Phytase plays a prominent role in monogastric animal nutrition due to its ability to improve phytic acid digestion in the gastrointestinal tract, releasing phosphorus and other micronutrients that are important for animal development. Moreover, phytase decreases the amounts of phytic acid and phosphate excreted in feces. Bioinformatics approaches can contribute to the understanding of the catalytic structure of phytase. Analysis of the catalytic structure can reveal enzymatic stability and the polarization and hydrophobicity of amino acids. One important aspect of this type of analysis is the estimation of the number of β-sheets and α-helices in the enzymatic structure. Fermentative processes or genetic engineering methods are employed for phytase production in transgenic plants or microorganisms. To this end, phytase genes are inserted in transgenic crops to improve the bioavailability of phosphorus. This promising technology aims to improve agricultural efficiency and productivity. Thus, the aim of this review is to present the characterization of the catalytic structure of plant and microbial phytases, phytase genes used in transgenic plants and microorganisms, and their biotechnological applications in animal nutrition, which do not impact negatively on environmental degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.