Fatigue assessments by the more robust strain-based approach demand the determination of the local strain history from nominal stresses. For notched members, a cyclic constitutive relation, the stress concentration factor SCF and a strain concentration rule are used with this aim in some approximate solutions. The plastic part of the cyclic constitutive relations for many materials is well adjusted by a Ramberg-Osgood RO type equation. The parameters in the RO equation are the cyclic strength coefficient and exponent H' and n' respectively. These parameters can be experimentally determined or estimated from the condition of strain compatibility between the RO and the Coffin-Manson-Basquin CMB equations. The present paper discusses the influence that the use of both types of parameters, independent or experimentally determined and compatible or estimated , has on the numerical stress-life curves of the AISI 4340 Aircraft Quality steel. By numerical stress-life curves we mean the stress amplitudes and the fatigue-life that result from the numerical solution of both, the strain-life CMB and the stress-strain RO relations, for the same strain amplitude. This would be equivalent to using a linear strain concentration rule notched members with two RO equations, one with independent parameters and the other with compatible parameters, for stress and life calculations. The effects of the stress state are also accounted for in the present investigation since both, stress-life and stressstrain equations are modified in accordance with the total deformation theory of plasticity and through the introduction of a plane stress biaxial ratio. The principal finding of the present paper is that, for the studied material, the numerical stress-life curves that result from the use of compatible and independent parameters are indistinguishable for the same stress state. Consequently, there are no important implications on life time calculations when the cyclic stress-strain curve is estimated in such a way that compatibility conditions for the AISI 4340 aircraft quality steel are ensured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.