During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5-893.2 m Measured Depth (MD). Continuous sampling and meso-to microscale characterization of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites, and mylonites, terminating 200-400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz+feldspar, most markedly below ~ 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.
Abstract. This study presents a unique database of 172 plagioclase Crystallographic Preferred Orientations (CPO) of variously deformed gabbroic rocks. The CPO characteristics as a function of the deformation regime (magmatic or crystal-plastic) are outlined and discussed. The studied samples are dominantly from slow- and fast-spread present-day ocean crust, as well as from the Oman ophiolite. Plagioclase is the dominant mineral phase in the studied samples. Plagioclase CPOs are grouped into three main categories: Axial-B, a strong point alignment of (010) with a girdle distribution of [100]; Axial-A, a strong point maximum concentration of [100] with parallel girdle distributions of (010) and (001); and P-type, point maxima of [100], (010), and (001). A majority of CPO patterns are Axial-B and P-type, in samples showing either magmatic or crystal-plastic deformation textures. Axial-A CPOs are less common; they represent 21% of the samples deformed by crystal-plastic flow. Although fabric strength (ODF J index) does not show any consistent variation as a function of the CPO patterns, there is a significant difference in the relationship between the ODF and pole figures J indices; the magmatic type microstructures have high (010) pole figures J indices, which increase linearly with ODF J index, whereas the high [100] pole figures J indices of plastically deformed samples vary in a more scattered manner with ODF J index. The multistage nature of plastic deformation superposed on a magmatic structure compared with magmatic flow, and the large number of possible slip-systems in plagioclase probably account for these differences. Calculated seismic properties (P wave and S wave velocities and anisotropies) of plagioclase aggregates show that anisotropy (up to 12% for P wave and 14% for S wave) tends to increase as a function of ODF J index. In comparison with the olivine 1998 CPO database, the magnitude of P wave anisotropy for a given J index is much less than olivine, whereas it is similar for S wave anisotropy. Despite a large variation of fabric patterns and geodynamic setting, seismic properties of plagioclase-rich rocks have similar magnitudes of anisotropy. There is a small difference in the aggregate elastic symmetry, with magmatic microstructures having higher orthorhombic and hexagonal components, whereas plastic deformation microstructures have a slightly higher monoclinic component, possibly correlated with predominant monoclinic simple shear flow in plastically deformed samples. Overall, plots for CPO strength (ODF J index), pole figure strength, CPO symmetry and seismic anisotropy show significant scattering. This could be related to sampling statistics, although our database is a factor of ten higher than the olivine database of 1998, or it could be related to the low symmetry (triclinic) structure of plagioclase resulting in the addition of degrees of freedom in the processes creating the CPOs.
The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occurs within the upper plane of Wadati-Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions (1.5 < P < 3.5 GPa; 583 K < T < 1121 K), using a D-DIA apparatus installed at a synchrotron beamline continuously monitoring stress, strain, phase changes, and acoustic emissions (AEs). Two distinct paths were investigated: i) heating during deformation at pressures > 2.5 GPa to maximum temperatures ranging from 762-1073 K, during which lawsonite and glaucophane became gradually unstable while entering the stability field of lawsonite-eclogite and the breakdown reaction of lawsonite was
Tridacna derasa shells show a crossed lamellar microstructure consisting of three hierarchical lamellar structural orders. The mineral part is intimately intergrown with 0.9 wt% organics, namely polysaccharides, glycosylated and unglycosylated proteins and lipids, identified by Fourier transform infrared spectrometry. Transmission electron microscopy shows nanometre-sized grains with irregular grain boundaries and abundant voids. Twinning is observed across all spatial scales and results in a spread of the crystal orientation angles. Electron backscatter diffraction analysis shows a strong fibre texture with the [001] axes of aragonite aligned radially to the shell surface. The aragonitic [100] and [010] axes are oriented randomly around [001]. The random orientation of anisotropic crystallographic directions in this plane reduces anisotropy of the Young's modulus and adds to the optimization of mechanical properties of bivalve shells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.