This paper aims to present the optical system of the Multispectral Camera MUX that is part of the payload for the CBERS 3 & 4 satellite (China Brazil Earth Resources Satellite). The CBERS program was created by Brazil and China for the development of Earth remote sensing satellites. The MUX camera is being developed by the Brazilian company OPTO ELETRÔNICA S.A. and consists of a multispectral camera with four spectral bands covering the wavelength range from blue to near infrared (from 450nm to 890nm) with a ground resolution of 20m and a ground swath width of 120 km. Besides MUX camera (optical system, signal processing electronics and mechanical frame), this company is also developing the Ground Support Equipment -GSE of this camera and is responsible for structural and environmental tests. At the moment, the project is in the Qualification Model (QM). During this phase of the development, the camera shall be submitted to several tests, including environmental, optical and structural tests with the objective of qualify the project and start the flight models manufacturing.
Surface heat treatment in glasses and ceramics, using CO2 lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO2 laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He–Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.