A simple refractometer using a reflective diffraction grating immersed in the test liquid is developed and its performance is studied. Due to the dependence of the light wavelength on the refractive index, determining the angle of the diffracted beam provides the refractive index of the liquid. The glass cell containing the test liquid is cylindrical, and the grating plane is parallel to the cylinder symmetry axis. The light beam normally impinges on the cell front wall and reaches the center of the grating so that the diffracted beam leaves the cell without being deviated by refraction. It is demonstrated that this characteristic of the optical setup minimizes important error sources due to undesired beam deviations and enables real-time refractive index measurement of liquids in transient processes. Moreover, the performances of the diffractive refractometer and of a commercial Abbe refractometer are compared in the measurement of the refractive indexes of aqueous NaCl solutions. A He-Ne laser at 632.8 nm is used as a light source, and the diffraction grating has 1200 lines/mm. Measurement precisions of the order of 8 × 10 are achieved.
Most of the whole-field optical methods for vibration measurement have low sensitivity when the points of the studied surface vibrate with the same amplitude. Those techniques also usually require complex and/or expensive solutions which are difficult to implement in engineering processes when the vibration amplitudes are relatively high. In order to overcome those limitations we propose a method for out-of-plane vibration measurement which uses structured light projection. The vibrating surface is obliquely illuminated by straight and parallel interference fringes produced by a Twyman-Green interferometer with a 532-nm laser as light source. In order to enable fringe visualization two techniques were employed, namely, the phase modulation of the fringe pattern by using a vibrating mirror in the interferometer, and a stroboscopic illumination by using a Fabry-Perot etalon amplitude modulator. We demonstrated the technique by measuring the vibration amplitudes of small objects in the millimeter and submillimeter range.
In this work, we report the development, construction, and the performance of two liquid refractometers that use a reflective diffraction grating immersed in a test liquid. The liquid is contained in a transparent glass cell with a rectangular cross section. The grating is oriented in such a way that the propagation directions of the incident beam and the beam diffracted by the lower part of the grating immersed in the liquid are perpendicular. In this configuration, the refractive index is determined by measuring the angle of the zeroth-order diffraction beam coming from the upper part of the grating, which is in contact with air. The diffractive refractometers (DR-1 and DR-2) have different angle measurement procedures and different light detection systems, and their advantages and drawbacks are pointed out. In the experiments, precisions of the order of 10-5 and 10-4 for DR-1 and DR-2 are achieved, respectively. The performances of both systems are compared with the performance of a commercial Abbe refractometer in the measurement of sugar and NaCl aqueous solutions.
This paper describes the conception, the development and the testing of a prototype of a simple and versatile device for micro displacement measurement and thickness monitoring of paper sheets and opaque or transparent plastic films during their fabrication. The device works based on triangulation using low power red diode laser beams for the measurements and low-cost Silicon photodiodes for light detection. The system reproductibility was evaluated as well as experimental simulations for thickness variation detection on adhesive tapes were carried out. The results showed that the gauge is capable to detect and measure thickness variations smaller than 5 µm in real time and can be easily implemented in a production system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.