Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that “all-or- nothing” interpretations on the mechanisms structuring metacommunities are rather the exception than the rule.
Modern metagenomic environmental DNA studies are almost completely reliant on next-generation sequencing, making evaluations of these methods critical. We compare two next-generation sequencing techniques – amplicon and shotgun – on water samples across four of Brazil’s major river floodplain systems (Amazon, Araguaia, Paraná, and Pantanal). Less than 50% of phyla identified via amplicon sequencing were recovered from shotgun sequencing, clearly challenging the dogma that mid-depth shotgun recovers more diversity than amplicon-based approaches. Amplicon sequencing also revealed ~27% more families. Overall the amplicon data were more robust across both biodiversity and community ecology analyses at different taxonomic scales. Our work doubles the sampling size in similar environmental studies, and novelly integrates environmental data (e.g., pH, temperature, nutrients) from each site, revealing divergent correlations depending on which data are used. While myriad variants on NGS techniques and bioinformatic pipelines are available, our results point to core differences that have not been highlighted in any studies to date. Given the low number of taxa identified when coupling shotgun data with clade-based taxonomic algorithms, previous studies that quantified biodiversity using such bioinformatic tools should be viewed cautiously or re-analyzed. Nonetheless, shotgun has complementary advantages that should be weighed when designing projects.
1. It is widely acknowledged that sudden, large-scale flood pulses are drivers of benthic and planktonic biodiversity change in floodplains. The impact of such pulses on pleuston (biotic communities associated with root systems of floating plants) remains to be demonstrated. Here, we investigate the effects of local and regional drivers on seasonal changes in abundance and diversity of ostracod communities in pleuston. 2. Temporal and spatial distribution patterns of species richness, abundance, diversity and evenness of ostracods associated with the floating water hyacinth, Eichhornia crassipes, in a lentic environment from the upper Paraná River floodplain, were investigated in relation to local, as well as regional, environmental factors. Ostracods were sampled monthly over an annual cycle (March 2004-February 2005. Twenty-seven species were found, representing the families Cyprididae, Candonidae, Limnocytheridae and Darwinulidae. Both diversity and abundance of ostracod communities showed seasonal changes, although species turn-over during the year was limited. 3. We tested two hypotheses concerning the causality of these fluctuations: seasonal recruitment and influx of allochthonous ostracods during the flood pulse. Our results indicate that seasonal recruitment is more likely to be the driver of fluctuations in relation to the flood pulse. We postulate that pleuston communities are buffered against possible detrimental effects of flood pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.