Mining processes produce a massive amount of waste which, if not treated properly, can cause significant environmental and social impacts. Recently, some studies have focused on the use of mining waste as an alternative raw material. This work developed new sustainable ceramic formulations based on bentonite mining waste (BMW) for applications in porcelain stoneware. The BMW was incorporated into the ceramic masses in different percentages (0, 2.5, 5, 10, 15, 20, 25, and 40 wt.%), in partial replacement to feldspar and total to quartz. X-ray diffraction (XRD), differential thermal calorimetry (DTA), and thermogravimetry analysis (TGA) techniques were used to characterize bentonite waste. Samples (50 mm × 20 mm × 5 mm) were obtained by uniaxial pressing. Such samples were dried and sintered at 1150, 1200, and 1250 °C. The physical–mechanical properties (apparent porosity, water absorption, linear shrinkage, apparent density, and flexural strength) were evaluated for sintered samples. The phases formed after sintering treatments were characterized by XDR and scanning electron microscopy (SEM). The BMW presented a mineralogical composition suitable for use as ceramic raw material. In summary, our results presented that the new sustainable ceramic formulations sintered at 1250 °C have the potential for use in stoneware and porcelain stoneware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.