Polyvinyl alcohol (PVA), PVA crosslinked with glutaraldehyde hydrogels (PVA/GA), PVA with tetraethylorthosilicate (PVA/TEOS) and PVA/GA/TEOS hybrids with recombinant MPB70 protein (rMPB70) incorporated were chemically characterized by Fourier transform infrared spectroscopy (FTIR). FTIR spectra of PVA hydrogel samples showed the absorption regions of the specific chemical groups associated with poly(vinyl alcohol) (-OH, -CO, -CH2) and PVA/GA confirming the formation of crosslinked hydrogel (duplet -CH). It was observed C-H broad alkyl stretching band (n = 2850-3000 cm-1) and typical strong hydroxyl bands for free alcohol (nonbonded -OH stretching band at n = 3600-3650 cm-1), and hydrogen bonded band (n = 3200-3570 cm-1). The most important vibration bands related to silane alcoxides have been verified on FTIR spectra of PVA/TEOS and PVA/GA/TEOS hybrids (Si-O-Si, n = 1080 and n = 450 cm-1; Si-OH, n = 950 cm-1). FTIR spectra of f PVA hydrogel with rMPB70 incorporated have indicated the specific groups usually found in protein structures, such as amides I, II and III, at 1680-1620 cm-1, 1580-1480 cm-1 and 1246 cm-1, respectively. These results have given strong evidence that recombinant protein rMPB70 was successfully adsorbed in the hydrogels and hybrids networks. These PVA based hydrogels and hybrids were further used in immunological assays (Enzyme-Linked Immunosorbent Assay - ELISA). Tests were performed to detect antibodies against rMPB70 protein in serum samples from bovines that were positive in the tuberculin test. Corresponding tests were carried out without PVA samples in microtiter plates as control. Similar results were found for commercially available microplates and PVA based hydrogels and hybrids developed in the present work regarding to immunoassay sensitivity and specificity response
The objective was to evaluate the suitability of using natural or lyophilized low density lipoproteins (LDL), in lieu of whole egg yolk, in extenders for cryopreserving ram semen. Once extragonadal sperm reserves were depleted in 10 fertile Santa Inês cross rams, two ejaculates per ram were collected for cryopreservation. Nine extenders were used: Tris-16% egg yolk extender with 5% glycerol as a control (T1), and substitution of whole egg yolk with 8, 12, 16 or 20% natural LDL (T2-T5, respectively), or with 8, 12, 16, or 20% lyophilized LDL (T6-T9). Semen was diluted to 100 × 10(6) sperm/mL, packaged into 0.25 mL straws, cooled, held at 5 °C for 3 h, and then frozen in liquid nitrogen vapor. Immediately after thawing (37 °C for 30 s), sperm total and progressive motility, and kinetic parameters were analyzed with computer assisted semen analysis (CASA). Percentage of sperm with plasma membrane functional integrity was assessed by the hypoosmotic swelling test (HOST), sperm membrane physical integrity with propidium iodide (PI), and acrosome integrity with FITC-PSA using an epifluorescent microscope. For all sperm end points, there was no difference between the control and natural LDL treatments (P > 0.05): total motility (T1: 20.9 ± 11.9 and average of T2-T5: 25.9 ± 13.6%; mean ± SD), progressive motility (T1: 6.6 ± 4.2 and average of T2-T5: 11.7 ± 7.5%), HOST(+) (T1: 23.7 ± 6.9 and average of T2-T5: 23.2 ± 8.7 %) and PI(-)/PSA(-) (T1: 13.8 ± 7.8 and average of T2-T5: 18.1 ± 7.8%). However, lyophilization was apparently unable to preserve the protective function of LDL; every sperm end point was significantly worse than in the control and natural LDL groups. We concluded that natural LDL was appropriate for cryopreserving ram semen, as it yielded results similar to those obtained with whole egg yolk.
In this work, novel composites based on calcium phosphates (CaP)/collagen (COL) doped with Zn(+2) have been synthesized. They were characterized by SEM coupled to EDS microprobe in order to evaluate their morphology and chemical composition, respectively. The biocompatibility of these synthetic CaP/COL nanocomposites doped and undoped with Zn(+2) was investigated through osteoblast cell culture assay. Calcium phosphates were produced via aqueous precipitation routes where two different phases were obtained, hydroxyapatite (HAP) and biphasic hydroxyapatite-betatricalcium phosphate (HAPbetaTCP). In the sequence, the type-I collagen (COL) was added to the inorganic phase based on calcium phosphate and the mixture was blended until a homogenous composite was obtained. Zn(+2) aqueous solution (1.0 wt%) was used as the doping reagent. The cell viability and the alkaline phosphatase production of osteoblasts in the presence of the composites were evaluated and compared to control osteoblasts. Also, the biocompatibility of the composite was investigated through cell morphological analysis using optical microscopy of osteoblasts. All experiments were performed in triplicates (n = 3) from three different experiments. They were analyzed by variance test (ANOVA) and Bonferroni's post-test with differences statistically significant at p < 0.05. The results showed that the CaP/COL composites doped and undoped with Zn(+2) did not present alterations in cell morphology in 72 h and had similar cell viability and alkaline phosphatase activity to the control. All the tested CaP/COL composites showed adequate biological properties with the potential to be used in bone tissue replacement applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.