Pathogens (bacteria, fungus and virus) are becoming a potential threat to the health of human beings and environment worldwide. They widely exist in the environment, with characteristics of variety, spreading quickly and easily causing adverse reactions. In this work, an Ag-based material is used to be incorporated and functionalized in polycotton fabrics using pad-dry-cure method. This composite proved to be effective for inhibiting the SARS-CoV-2 virus, decreasing the number of replicates in 99.99% after an incubation period of 2 minutes. In addition, it caused 99.99% inhibition of the pathogens S. aureus, E. coli and C. albicans, preventing cross-infections and does not cause allergies or photoirritation processes, demonstrating the safety of its use.
COVID-19, as the cause of a global pandemic, has resulted in lockdowns all over the world since early 2020. Both theoretical and experimental efforts are being made to find an effective treatment to suppress the virus, constituting the forefront of current global safety concerns and a significant burden on global economies. The development of innovative materials able to prevent the transmission, spread, and entry of COVID-19 pathogens into the human body is currently in the spotlight. The synthesis of these materials is, therefore, gaining momentum, as methods providing nontoxic and environmentally friendly procedures are in high demand. Here, a highly virucidal material constructed from SiO2-Ag composite immobilized in a polymeric matrix (ethyl vinyl acetate) is presented. The experimental results indicated that the as-fabricated samples exhibited high antibacterial activity towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as towards SARS-CoV-2. Based on the present results and radical scavenger experiments, we propose a possible mechanism to explain the enhancement of the biocidal activity. In the presence of O2 and H2O, the plasmon-assisted surface mechanism is the major reaction channel generating reactive oxygen species (ROS). We believe that the present strategy based on the plasmonic effect would be a significant contribution to the design and preparation of efficient biocidal materials. This fundamental research is a precedent for the design and application of adequate technology to the next-generation of antiviral surfaces to combat SARS-CoV-2.
The ongoing COVID-19 pandemic has pushed scientists and technologists to find novel strategies to develop new materials to prevent the transmission, spread, and entry of pathogens into the human body. In this report, the fabrication of polyvinyl chloride (PVC)-SiO 2 -Ag composite is presented, in which the percentage of Ag is 0.84% wt. Our findings render that this composite eliminates (> 99.8%) bacteria and fungus ( Staphylococcus aureus , Escherichia coli , Penicillium funiculosum ) and SARS-CoV-2, by surface contact in 2 h hours and 15 min, respectively. Specific migration analysis shown that the use of the PVC-SiO 2 -Ag composite is considered safe and effective for food preservation. This research and innovation front can be considered a breakthrough for the design of biocide materials. Future directions for this exciting and highly significant research field can open the door to the development of new technologies for the fabrication of packaging films to protect consumer products (such as fruits, vegetables, and other foods). Supplementary information The online version contains supplementary material available at 10.1007/s10965-021-02729-1.
The COVID-19 pandemic has emerged as an unprecedented global healthcare emergency, demanding the urgent development of effective materials to inactivate the SARS-CoV-2 virus. This research was planned to disclose the remarkable biocidal activity of SiO2–Ag composites incorporated into low-density polyethylene. For this purpose, a joint experimental and theoretical [based on first-principles calculations at the density functional theory (DFT) level] study is performed. Biological assays showed that this material eliminatesStaphylococcus aureusand SARS-CoV-2 virus in just 2 min. Here, we investigate a previously unexplored process that we postulate may occur along the O2 and H2O adsorption and activation processes of pure and defective SiO2–Ag surfaces for the generation of reactive oxygen species (ROS). The obtained results help us to predict the nature of ROS: superoxide anion radicals, •O2 –, hydroxyl radicals, •OH, and hydroperoxyl radicals, •HO2, that destroy and degrade the structure of the SARS-COV-2 virus. This is consistent with the DFT studies, where the energetic, electronic, and magnetic properties of the intermediates show a feasible formation of ROS. Present findings are expected to provide new insights into the relationship among the structure, property, and biocidal activity of semiconductor/metal SiO2–Ag composites.
ResumoRecobrimentos são largamente empregados na indústria, porém o desenvolvimento de novos materiais com propriedades aperfeiçoadas supre a contínua demanda por uma otimização de desempenho, relação custo-benefício ou aumento da vida útil. Os coatings cerâmicos nanoestruturados são obtidos pela formação de um políme-ro híbrido (orgânico-inorgânico) e este é aplicado em superfícies metálicas de aço inox, conferindo a propriedade bactericida, sem alterar as propriedades iniciais do aço. O material é aplicado por intermédio de uma resina poliméri-ca na superfície de inox, gerando "in-situ" o material nanométrico. A tecnologia desenvolvida permite que as superfícies metálicas tenham uma maior proteção contra fungos e bactérias, ou seja, a superfície de inox adquire a propriedade bactericida. Foram realizados ensaios de cultura bacteriana, com colônias de bactérias Escherichia Coli no aço inox com coating nanométrico bactericida e este degradou as bactérias da superfície do aço inox (304 e 430). Além disso, o coating nanoestruturado bactericida diminui a perda por abrasão do aço inox em 30 % (norma ASTM D 4060/95) e diminui a oxidação e a rugosidade da superfície do inox. Palavras
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.