Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients.
Cladosporium species are active in protecting plants against different biotic and abiotic stresses. Since these species produced a wide range of secondary metabolites responsible for the adaptation to new habitats, plant health and performance, they are of great interest, especially for biostimulants in agriculture. Cladosporium sp. produces protein hydrolysates (PHs), a class of biostimulants, by cultivation on medium with keratin wastes (feathers) as carbon and energy sources. The aim of this study was to select a Cladosporium isolate with potential to be used as plant growth promoting agent. The characteristics of Cladosporium isolates as plants biostimulants were evaluated through several tests, such as: antagonism versus plants pathogens, effect on plant growth of secreted volatiles produced by isolates, secretion of hydrolytic enzymes, production of 3-indole acetic acid, zinc and phosphorous solubilization, capacity to promote tomato seedlings growth (pot experiments). Cladosporium isolate T2 presented positive results to all tests. Encouraging results were obtained treating tomato seedlings with PHs from isolate Cladosporium T2 cultured on medium supplemented with 1% (w/w) chicken feathers, for which growth parameters, such as stem weight, stem height, and root weight were significantly higher by 65%, 32%, and 55%, respectively, compared to those treated with water.
The application of selenium (Se) to tomatoes enhances accumulation of bioactive compounds. The physiological window of Se is very narrow, and Se overdose reduces the yield. Glycine betaine was shown to reduce Se’s negative effects on plants and to potentiate its beneficial effects. In this study, baker’s yeast vinasse (BYV), as an affordable source of glycine betaine, was tested for its interaction with Se in an optimized foliar fertilizer. The application dose was selected after a laboratory experiment, wherein assays on plant height, leaves surfaces, stomatal conductance, and chlorophyll fluorescence were done. The Se and BYV supplemented foliar fertilizers were tested for their effects on accumulation of bioactives in drip-irrigated tomatoes cultivated in a greenhouse. Under laboratory conditions, assays demonstrated Se and BYV induced effects on tomatoes plants. Both the stomatal conductance and photosynthesis efficiency increased compared to a water treated control. The greenhouse experiment demonstrated that BYV and Se addition increases the number of tomato fruits in the “extra” marketable class and enhances the accumulation of ascorbic acid, carotenes, polyphenols, and flavonoids. The effects depend on the composition of the foliar fertilizer, the most significant effects being recorded for the foliar applied product with the highest BYV and nitrogen content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.