Gastrointestinal nematodes resistant to anthelmintics have been reported in several regions of Brazil, and they may be associated with economic losses for the cattle industry. This study aimed to evaluate the resistance status of gastrointestinal nematodes from naturally infected beef cattle to several commercially available anthelmintics, as well as to test the efficacy of combinations of anthelmintics against multi-resistant gastrointestinal nematodes. Ten farms located in Rio Grande do Sul state were selected by: farmers' consent; extensive raising system; availability of calves aged from 7 to 9 months naturally infected by gastrointestinal nematodes; absence of anthelmintic treatment for 60 days before the study; and presence of 70–100 calves or more of both genders with ≥200 eggs per gram of feces (EPG) (sensitivity of 50 EPG). These calves were distributed into 10 groups (of 7–10 animals) per farm and treated with ivermectin, doramectin, eprinomectin, fenbendazole, closantel, nitroxynil, disophenol, levamisole, albendazole, or moxidectin. Feces were collected 2 days before treatment and 14 days after treatment. Additional groups of 7–10 calves were used to test six different two-drug combinations at four of the studied farms. In general terms, fenbendazole was the most effective drug, followed by levamisole, disophenol, and moxidectin. However, parasite resistance to multiple drugs was found in all herds, especially in the genera Cooperia spp., Trichostrongylus spp., and Haemonchus spp.. Some of the two-drug combinations were effective against nematode populations identified as resistant to the same compounds when used as single drugs. The most effective combinations were moxidectin + levamisole, doramectin + fenbendazole, and levamisole + closantel. In this study, parasites resistant to the main commercially available anthelmintics were found in all herds, and some combinations of two active components belonging to different chemical groups were effective against multi-drug resistant gastrointestinal nematodes.
Toxoplasma gondii-a protozoan belonging to the subphylum Apicomplexa (Adl et al., 2012) and family Sarcocystidae-is the causal agent of toxoplasmosis, an important and widespread zoonotic disease. The protozoan life cycle involves domestic and wild felids as definitive hosts and a number of mammals, including humans, as intermediate hosts. Modes of T. gondii transmission to human include (a) ingestion of sporulated oocysts present in contaminated water or food; (b) ingestion of bradyzoite-containing cysts present
Toxoplasma gondii is a protozoan that has great genetic diversity and is prevalent worldwide. In 2018, an outbreak of toxoplasmosis occurred in Santa Maria, Brazil, which was considered the largest outbreak ever described in the world. This paper describes the isolation and molecular characterization of Toxoplasma gondii from the placenta of two pregnant women with acute toxoplasmosis who had live births and were receiving treatment for toxoplasmosis during the outbreak. For this, placental tissue samples from two patients underwent isolation by mice bioassay, conventional PCR and genotyping using PCR-RFLP with twelve markers. Both samples were positive in isolation in mice. The isolate was lethal to mice, suggesting high virulence. In addition, the samples were positive in conventional PCR and isolates submitted to PCR-RFLP genotyping presented an atypical genotype, which had never been described before. This research contributes to the elucidation of this great outbreak in Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.