The allocation of distributed generation and capacitor banks is critical for success in the planning of power grids. A methodology is developed for the optimal placement of distributed renewable generation (wind and photovoltaic powers) and capacitor banks is developed based on technical and economic parameters. In order to preserve the horoseasonal and stochastic dependence nature of the wind and solar power, the methodology uses a model that integrates the sequential Monte Carlo method and the diagonal band Copula model, integrating historical data of wind speed, solar radiation and feeder load from the region of study. An efficient algorithm based on Genetic Algorithms is proposed to implement the optimization. The algorithm validation demonstrates a reduction of up to 71.7% in annual losses of active power in the Bandeira feeder and 73.4% in the Recife feeder, with adequate voltage levels and a return on investment of 6-7 years."
O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos seus respectivos autores.
This paperwork proposes a methodology to determine a model of distributed generation of electric energy from photovoltaic panels, determining the optimal allocation of these generators in an electric energy distribution network, using technical parameters and calculating the installation cost of those panels. The methodology makes use of the photovoltaic generation profile in the summer season and is based on the load curve of low voltage residential consumers. The optimization of the location of the distributed generation units aims to minimize the daily losses of active power and the installation costs of the generators connected to the network. The optimization problem also provides for the allocation of battery banks with the distributed generators, in order to manage the active power of the network and, consequently, to improve the voltage profile and minimize the electrical losses. The optimization solution is obtained through a Genetic Algorithm, which receives as input the daily data of the active power of the solar generators and the load demand to search for better solutions to the problem. To validate the proposed solution a test was carried out on a 78-bar radial feeder, resulting in daily losses of active power and voltage profiles. Resumo: Propõe-se uma metodologia para determinar um modelo de geração distribuída de energia elétrica a partir de painéis fotovoltaicos, determinando a alocação ótima desses geradores em uma rede de distribuição de energia elétrica, utilizando parâmetros técnicos e calculando o custo de instalação desses painéis. A metodologia faz uso do perfil de geração fotovoltaica na temporada de verão e é baseada na curva de carga de consumidores residenciais de baixa tensão. A otimização da localização das unidades de geração distribuída visa minimizar as perdas diárias de energia ativa e os custos de instalação dos geradores conectados à rede. O problema de otimização também prevê a alocação de bancos de baterias em concomitância com a geração distribuída, a fim de gerenciar a potência ativa da rede e, consequentemente, melhorar o perfil de tensão e minimizar as perdas elétricas. A solução de otimização é obtida através de um Algoritmo Genético, que recebe como entrada os dados diários da potência ativa dos geradores solares e a demanda de carga para buscar melhores soluções para o problema. Para validar a solução proposta, foi realizado um teste em um alimentador radial de 78 barras, resultando em perdas diárias de perfis de tensão e potência ativa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.