This paper presents the first detailed comparisons between experiments and direct numerical simulations (DNS) of inertial particle clustering in nearly isotropic ‘box turbulence’. The experimental system consists of a box 38cm in each dimension with fans in the eight corners that sustain nearly isotropic turbulence in the centre of the box. We inject hollow glass spheres with a mean diameter of 6 μm and measure the locations of several hundred particles in a 1 cm3 volume in the centre of the box using three-dimensional digital holographic particle imaging. We observe particle concentration fluctuations that result from inertial clustering (sometimes called ‘preferential concentration’). The radial distribution function (RDF), a statistical measure of clustering, has been calculated from the particle position field. We select this measure because of its relevance to the collision kernel for particles. DNS of the equivalent system, with nearly perfect parameter overlap, have also been performed. We observe good agreement between the RDF predictions of the DNS and the experimental observations, despite some challenges in the interpretation of the experiments. The results provide important guidance on ways to improve the measurement.
Enclosed flow apparatuses with negligible mean flow are emerging as alternatives to wind tunnels for laboratory studies of homogeneous and isotropic turbulence (HIT) with or without aerosol particles, especially in experimental validation of Direct Numerical Simulation (DNS). It is desired that these flow apparatuses generate HIT at high Taylor-microscale Reynolds numbers ( λ R ) and enable accurate measurement of turbulence parameters including kinetic energy dissipation rate and thereby λ R . We have designed an enclosed, fan-driven, highly symmetric truncated-icosahedron 'soccer ball' airflow apparatus that enables particle imaging velocimetry (PIV) and other whole-field flow measurement techniques. To minimize gravity effect on inertial particles and improve isotropy, we chose fans instead of synthetic jets as flow actuators. We developed explicit relations between λ R and physical as well as operational parameters of enclosed HIT chambers. To experimentally characterize turbulence in this nearzero-mean flow chamber, we devised a new two-scale PIV approach utilizing two independent PIV systems to obtain both high resolution and large field of view. Velocity measurement results show that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48 mm diameter) of the chamber. From PIV-measured velocity fields, we obtained turbulence dissipation rates and thereby λ R by using the second-order velocity structure function. A maximum λ R of 384 was achieved. Furthermore, experiments confirmed that the root mean square (RMS) velocity increases linearly with fan speed, and λ R increases with the square root of fan speed. Characterizing turbulence in such apparatus paves the way for further investigation of particle dynamics in particle-laden homogeneous and isotropic turbulence.
To apply digital holography to the measurement of three-dimensional dense particle fields in large facilities, we have developed a hybrid digital holographic particle-imaging system. The technique combines the advantages of off-axis (side) scattering in suppressing speckle noise and on-axis (in-line) recording in lowering the digital sensor resolution requirement. A camera lens is attached to the digital sensor to compensate for the weak object wave from side scattering over a large recording distance. A simple numerical reconstruction algorithm is developed for holograms recorded with a lens without requiring complex and impractical mathematical corrections. We analyze the effect of image sensor resolution and off-axis angle on system performance and quantify the particle positioning accuracy of the system. The holographic system is successfully applied to the study of inertial particle clustering in isotropic turbulence.
A series of compounds bearing quinoline-imidazole (8a-e, 9a-e, 10a-e, 11a-e, and 12a-e) not reported previously were designed and synthesized. The target compounds were evaluated for antitumor activity against A549, PC-3, HepG2, and MCF-7 cells by the MTT method, with NVP-BEZ235 being the positive control. Most compounds showed moderate activity and compound 12a showed the best activity against HepG2, A549, and PC-3 cells, with half-maximal inhibitory concentration (IC ) values of 2.42 ± 1.02 µM, 6.29 ± 0.99 µM, and 5.11 ± 1.00 µM, respectively, which was equal to NVP-BEZ235 (0.54 ± 0.13 µM, 0.36 ± 0.06 µM, 0.20 ± 0.01 µM). Besides, the IC value of 12a against the cell line WI-38 (human fetal lung fibroblasts) was 32.8 ± 1.23 µM, indicating that the target compounds were selective for cancer cells. So, 11a and 12a were evaluated against PI3Kα and mTOR to find out if the compounds acted through the PI3K-Akt-mTOR signal transduction pathway. The inhibition ratios to PI3Kα and mTOR were slightly lower than that of NVP-BEZ235, suggesting there may be some other mechanisms of action. The structure-activity relationships and docking study of 11a and 12a revealed that the latter was superior. Moreover, the target compounds showed better in vitro anticancer activity when the C-6 of the quinoline ring was replaced by a bromine atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.