Abstract:As digital terrain models are indispensable for visualizing and modeling geographic processes, terrain information content is useful for terrain generalization and representation. For terrain generalization, if the terrain information is considered, the generalized terrain may be of higher fidelity. In other words, the richer the terrain information at the terrain surface, the smaller the degree of terrain simplification. Terrain information content is also important for evaluating the quality of the rendered terrain, e.g., the rendered web terrain tile service in Google Maps (Google Inc., Mountain View, CA, USA). However, a unified definition and measures for terrain information content have not been established. Therefore, in this paper, a definition and measures for terrain information content from Digital Elevation Model (DEM, i.e., a digital model or 3D representation of a terrain's surface) data are proposed and are based on the theory of map information content, remote sensing image information content and other geospatial information content. The information entropy was taken as the information measuring method for the terrain information content. Two experiments were carried out to verify the measurement methods of the terrain information content. One is the analysis of terrain information content in OPEN ACCESSEntropy 2015, 17 7022 different geomorphic types, and the results showed that the more complex the geomorphic type, the richer the terrain information content. The other is the analysis of terrain information content with different resolutions, and the results showed that the finer the resolution, the richer the terrain information. Both experiments verified the reliability of the measurements of the terrain information content proposed in this paper.
Heavy air pollution, especially fine particulate matter (PM 2.5 ), poses serious challenges to environmental sustainability in Beijing. Epidemiological studies and the identification of measures for preventing serious air pollution both require accurate PM 2.5 spatial distribution data. Land use regression (LUR) models are promising for estimating the spatial distribution of PM 2.5 at a high spatial resolution. However, typical LUR models have a limited sampling point explanation rate (SPER, i.e., the rate of the sampling points with reasonable predicted concentrations to the total number of sampling points) and accuracy. Hence, self-adaptive revised LUR models are proposed in this paper for improving the SPER and accuracy of typical LUR models. The self-adaptive revised LUR model combines a typical LUR model with self-adaptive LUR model groups. The typical LUR model was used to estimate the PM 2.5 concentrations, and the self-adaptive LUR model groups were constructed for all of the sampling points removed from the typical LUR model because they were beyond the prediction data range, which was from 60% of the minimum observation to 120% of the maximum observation. The final results were analyzed using three methods, including an accuracy analysis, and were compared with typical LUR model results and the spatial variations in Beijing. The accuracy satisfied the demands of the analysis, and the accuracies at the different monitoring sites indicated spatial variations in the accuracy of the self-adaptive revised LUR model. The accuracy was high in the central area and low in suburban areas. The comparison analysis showed that the self-adaptive LUR model increased the SPER from 75% to 90% and increased the accuracy (based on the root-mean-square error) from 20.643 µg/m 3 to 17.443 µg/m 3 for the PM 2.5 concentrations during the winter of 2014 in Beijing. The spatial variation analysis for Beijing showed that the PM 2.5 concentrations were low in the north, especially in the northwest region, and high in the southern and central portions of Beijing. This spatial variation was consistent with the fact that the northern region is mountainous and has fewer people and less traffic, which results in lower air pollution, than in the central region, which has a high population density and heavy traffic. Moreover, the southern region is adjacent to Hebei province, which contains many polluting enterprises; thus, this area exhibits higher air pollution levels than Beijing. Therefore, the self-adaptive revised LUR model is effective and reliable.
Population spatialization is the foundation for the visualization and analysis of population integrated with other information, such as environmental resources, economy, and public health. The existing population spatialization models have solved many problems for population distribution, but most of these studies have focused on a specific, single-scale approach and ignored the scale transformation for population spatialization. However, multi-scale visualization and the analysis of spatial information need multi-scale information. Meanwhile, the population distribution map as one kind of thematic map is always overlaid with the digital vector map or remote sensing map and visualized in the Web Geographic Information Systems (Web GIS), so it should adapt to the map scale showed in browser, when the user zoom in and zoom out. Hence adaptive multi-scale is necessary for population spatialization. Therefore, in this study, an adaptive multi-scale population spatialization model (APSM) is proposed with comprehensive factors constrained. These factors are residential area, land cover, public transport, hydrology, terrain, and climate. All of them are closely associated with population distribution. The overall methodology of APSM and the process for APSM are expounded in this paper. Meanwhile, with a case study of Russia, the processes of APSM for Russia are stated, and a population spatialization tool is implemented for expanding the application of APSM. The experimental analysis showed that APSM satisfied the requirement of geospatial analysis well and obtained a reliable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.